forked from git/git
-
Notifications
You must be signed in to change notification settings - Fork 4
Packed-refs v2 Part I: Optionally hash the index #23
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The hashfile API is useful for generating files that include a trailing hash of the file's contents up to that point. Using such a hash is helpful for verifying the file for corruption-at-rest, such as a faulty drive causing flipped bits. Since the commit-graph and multi-pack-index files both use this trailing hash, the chunk-format API uses a 'struct hashfile' to handle the I/O to the file. This was very convenient to allow using the hashfile methods during these operations. However, hashing the file contents during write comes at a performance penalty. It's slower to hash the bytes on their way to the disk than without that step. If we wish to use the chunk-format API to upgrade other file types, then this hashing is a performance penalty that might not be worth the benefit of a trailing hash. For example, if we create a chunk-format version of the packed-refs file, then the file format could shrink by using raw object IDs instead of hexadecimal representations in ASCII. That reduction in size is not enough to counteract the performance penalty of hashing the file contents. In cases such as deleting a reference that appears in the packed-refs file, that write-time performance is critical. This is in contrast to the commit-graph and multi-pack-index files which are mainly updated in non-critical paths such as background maintenance. One way to allow future chunked formats to not suffer this penalty would be to create an abstraction layer around the 'struct hashfile' using a vtable of function pointers. This would allow placing a different representation in place of the hashfile. This option would be cumbersome for a few reasons. First, the hashfile's buffered writes are already highly optimized and would need to be duplicated in another code path. The second is that the chunk-format API calls the chunk_write_fn pointers using a hashfile. If we change that to an abstraction layer, then those that _do_ use the hashfile API would need to change all of their instances of hashwrite(), hashwrite_be32(), and others to use the new abstraction layer. Instead, this change opts for a simpler change. Introduce a new 'skip_hash' option to 'struct hashfile'. When set, the update_fn and final_fn members of the_hash_algo are skipped. When finalizing the hashfile, the trailing hash is replaced with the null hash. This use of a trailing null hash would be desireable in either case, since we do not want to special case a file format to have a different length depending on whether it was hashed or not. When the final bytes of a file are all zero, we can infer that it was written without hashing, and thus that verification is not available as a check for file consistency. This also means that we could easily toggle hashing for any file format we desire. For the commit-graph and multi-pack-index file, it may be possible to allow the null hash without incrementing the file format version, since it technically fits the structure of the file format. The only issue is that older versions would trigger a failure during 'git fsck'. For these file formats, we may want to delay such a change until it is justified. However, the index file is written in critical paths. It is also frequently updated, so corruption at rest is less likely to be an issue than in those other file formats. This could be a good candidate to create an option that skips the hashing operation. A version of this patch has existed in the microsoft/git fork since 2017 [1] (the linked commit was rebased in 2018, but the original dates back to January 2017). Here, the change to make the index use this fast path is delayed until a later change. [1] microsoft@21fed2d Co-authored-by: Kevin Willford <kewillf@microsoft.com> Signed-off-by: Kevin Willford <kewillf@microsoft.com> Signed-off-by: Derrick Stolee <derrickstolee@github.com>
The previous change allowed skipping the hashing portion of the hashwrite API, using it instead as a buffered write API. Disabling the hashwrite can be particularly helpful when the write operation is in a critical path. One such critical path is the writing of the index. This operation is so critical that the sparse index was created specifically to reduce the size of the index to make these writes (and reads) faster. Following a similar approach to one used in the microsoft/git fork [1], add a new config option that allows disabling this hashing during the index write. The cost is that we can no longer validate the contents for corruption-at-rest using the trailing hash. [1] microsoft@21fed2d While older Git versions will not recognize the null hash as a special case, the file format itself is still being met in terms of its structure. Using this null hash will still allow Git operations to function across older versions. The one exception is 'git fsck' which checks the hash of the index file. Here, we disable this check if the trailing hash is all zeroes. We add a warning to the config option that this may cause undesirable behavior with older Git versions. As a quick comparison, I tested 'git update-index --force-write' with and without index.computHash=false on a copy of the Linux kernel repository. Benchmark 1: with hash Time (mean ± σ): 46.3 ms ± 13.8 ms [User: 34.3 ms, System: 11.9 ms] Range (min … max): 34.3 ms … 79.1 ms 82 runs Benchmark 2: without hash Time (mean ± σ): 26.0 ms ± 7.9 ms [User: 11.8 ms, System: 14.2 ms] Range (min … max): 16.3 ms … 42.0 ms 69 runs Summary 'without hash' ran 1.78 ± 0.76 times faster than 'with hash' These performance benefits are substantial enough to allow users the ability to opt-in to this feature, even with the potential confusion with older 'git fsck' versions. Signed-off-by: Derrick Stolee <derrickstolee@github.com>
This was referenced Nov 4, 2022
c03801e
to
bbe21b6
Compare
derrickstolee
pushed a commit
that referenced
this pull request
Jan 17, 2023
It is possible to trigger an integer overflow when parsing attribute names when there are more than 2^31 of them for a single pattern. This can either lead to us dying due to trying to request too many bytes: blob=$(perl -e 'print "f" . " a=" x 2147483649' | git hash-object -w --stdin) git update-index --add --cacheinfo 100644,$blob,.gitattributes git attr-check --all file ================================================================= ==1022==ERROR: AddressSanitizer: requested allocation size 0xfffffff800000032 (0xfffffff800001038 after adjustments for alignment, red zones etc.) exceeds maximum supported size of 0x10000000000 (thread T0) #0 0x7fd3efabf411 in __interceptor_calloc /usr/src/debug/gcc/libsanitizer/asan/asan_malloc_linux.cpp:77 #1 0x5563a0a1e3d3 in xcalloc wrapper.c:150 #2 0x5563a058d005 in parse_attr_line attr.c:384 #3 0x5563a058e661 in handle_attr_line attr.c:660 #4 0x5563a058eddb in read_attr_from_index attr.c:769 #5 0x5563a058ef12 in read_attr attr.c:797 #6 0x5563a058f24c in bootstrap_attr_stack attr.c:867 #7 0x5563a058f4a3 in prepare_attr_stack attr.c:902 #8 0x5563a05905da in collect_some_attrs attr.c:1097 #9 0x5563a059093d in git_all_attrs attr.c:1128 #10 0x5563a02f636e in check_attr builtin/check-attr.c:67 #11 0x5563a02f6c12 in cmd_check_attr builtin/check-attr.c:183 #12 0x5563a02aa993 in run_builtin git.c:466 #13 0x5563a02ab397 in handle_builtin git.c:721 #14 0x5563a02abb2b in run_argv git.c:788 #15 0x5563a02ac991 in cmd_main git.c:926 #16 0x5563a05432bd in main common-main.c:57 #17 0x7fd3ef82228f (/usr/lib/libc.so.6+0x2328f) ==1022==HINT: if you don't care about these errors you may set allocator_may_return_null=1 SUMMARY: AddressSanitizer: allocation-size-too-big /usr/src/debug/gcc/libsanitizer/asan/asan_malloc_linux.cpp:77 in __interceptor_calloc ==1022==ABORTING Or, much worse, it can lead to an out-of-bounds write because we underallocate and then memcpy(3P) into an array: perl -e ' print "A " . "\rh="x2000000000; print "\rh="x2000000000; print "\rh="x294967294 . "\n" ' >.gitattributes git add .gitattributes git commit -am "evil attributes" $ git clone --quiet /path/to/repo ================================================================= ==15062==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000002550 at pc 0x5555559884d5 bp 0x7fffffffbc60 sp 0x7fffffffbc58 WRITE of size 8 at 0x602000002550 thread T0 #0 0x5555559884d4 in parse_attr_line attr.c:393 #1 0x5555559884d4 in handle_attr_line attr.c:660 #2 0x555555988902 in read_attr_from_index attr.c:784 #3 0x555555988902 in read_attr_from_index attr.c:747 #4 0x555555988a1d in read_attr attr.c:800 #5 0x555555989b0c in bootstrap_attr_stack attr.c:882 #6 0x555555989b0c in prepare_attr_stack attr.c:917 #7 0x555555989b0c in collect_some_attrs attr.c:1112 #8 0x55555598b141 in git_check_attr attr.c:1126 #9 0x555555a13004 in convert_attrs convert.c:1311 #10 0x555555a95e04 in checkout_entry_ca entry.c:553 #11 0x555555d58bf6 in checkout_entry entry.h:42 #12 0x555555d58bf6 in check_updates unpack-trees.c:480 #13 0x555555d5eb55 in unpack_trees unpack-trees.c:2040 #14 0x555555785ab7 in checkout builtin/clone.c:724 #15 0x555555785ab7 in cmd_clone builtin/clone.c:1384 #16 0x55555572443c in run_builtin git.c:466 #17 0x55555572443c in handle_builtin git.c:721 #18 0x555555727872 in run_argv git.c:788 #19 0x555555727872 in cmd_main git.c:926 #20 0x555555721fa0 in main common-main.c:57 #21 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308 #22 0x555555723f39 in _start (git+0x1cff39) 0x602000002552 is located 0 bytes to the right of 2-byte region [0x602000002550,0x602000002552) allocated by thread T0 here: #0 0x7ffff768c037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x555555d7fff7 in xcalloc wrapper.c:150 #2 0x55555598815f in parse_attr_line attr.c:384 #3 0x55555598815f in handle_attr_line attr.c:660 #4 0x555555988902 in read_attr_from_index attr.c:784 #5 0x555555988902 in read_attr_from_index attr.c:747 #6 0x555555988a1d in read_attr attr.c:800 #7 0x555555989b0c in bootstrap_attr_stack attr.c:882 #8 0x555555989b0c in prepare_attr_stack attr.c:917 #9 0x555555989b0c in collect_some_attrs attr.c:1112 #10 0x55555598b141 in git_check_attr attr.c:1126 #11 0x555555a13004 in convert_attrs convert.c:1311 #12 0x555555a95e04 in checkout_entry_ca entry.c:553 #13 0x555555d58bf6 in checkout_entry entry.h:42 #14 0x555555d58bf6 in check_updates unpack-trees.c:480 #15 0x555555d5eb55 in unpack_trees unpack-trees.c:2040 #16 0x555555785ab7 in checkout builtin/clone.c:724 #17 0x555555785ab7 in cmd_clone builtin/clone.c:1384 #18 0x55555572443c in run_builtin git.c:466 #19 0x55555572443c in handle_builtin git.c:721 #20 0x555555727872 in run_argv git.c:788 #21 0x555555727872 in cmd_main git.c:926 #22 0x555555721fa0 in main common-main.c:57 #23 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308 SUMMARY: AddressSanitizer: heap-buffer-overflow attr.c:393 in parse_attr_line Shadow bytes around the buggy address: 0x0c047fff8450: fa fa 00 02 fa fa 00 07 fa fa fd fd fa fa 00 00 0x0c047fff8460: fa fa 02 fa fa fa fd fd fa fa 00 06 fa fa 05 fa 0x0c047fff8470: fa fa fd fd fa fa 00 02 fa fa 06 fa fa fa 05 fa 0x0c047fff8480: fa fa 07 fa fa fa fd fd fa fa 00 01 fa fa 00 02 0x0c047fff8490: fa fa 00 03 fa fa 00 fa fa fa 00 01 fa fa 00 03 =>0x0c047fff84a0: fa fa 00 01 fa fa 00 02 fa fa[02]fa fa fa fa fa 0x0c047fff84b0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 0x0c047fff84c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 0x0c047fff84d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 0x0c047fff84e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 0x0c047fff84f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Shadow gap: cc ==15062==ABORTING Fix this bug by using `size_t` instead to count the number of attributes so that this value cannot reasonably overflow without running out of memory before already. Reported-by: Markus Vervier <markus.vervier@x41-dsec.de> Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
derrickstolee
pushed a commit
that referenced
this pull request
Sep 5, 2024
It was recently reported that concurrent reads and writes may cause the reftable backend to segfault. The root cause of this is that we do not properly keep track of reftable readers across reloads. Suppose that you have a reftable iterator and then decide to reload the stack while iterating through the iterator. When the stack has been rewritten since we have created the iterator, then we would end up discarding a subset of readers that may still be in use by the iterator. The consequence is that we now try to reference deallocated memory, which of course segfaults. One way to trigger this is in t5616, where some background maintenance jobs have been leaking from one test into another. This leads to stack traces like the following one: + git -c protocol.version=0 -C pc1 fetch --filter=blob:limit=29999 --refetch origin AddressSanitizer:DEADLYSIGNAL ================================================================= ==657994==ERROR: AddressSanitizer: SEGV on unknown address 0x7fa0f0ec6089 (pc 0x55f23e52ddf9 bp 0x7ffe7bfa1700 sp 0x7ffe7bfa1700 T0) ==657994==The signal is caused by a READ memory access. #0 0x55f23e52ddf9 in get_var_int reftable/record.c:29 #1 0x55f23e53295e in reftable_decode_keylen reftable/record.c:170 #2 0x55f23e532cc0 in reftable_decode_key reftable/record.c:194 #3 0x55f23e54e72e in block_iter_next reftable/block.c:398 #4 0x55f23e5573dc in table_iter_next_in_block reftable/reader.c:240 #5 0x55f23e5573dc in table_iter_next reftable/reader.c:355 #6 0x55f23e5573dc in table_iter_next reftable/reader.c:339 #7 0x55f23e551283 in merged_iter_advance_subiter reftable/merged.c:69 #8 0x55f23e55169e in merged_iter_next_entry reftable/merged.c:123 #9 0x55f23e55169e in merged_iter_next_void reftable/merged.c:172 #10 0x55f23e537625 in reftable_iterator_next_ref reftable/generic.c:175 #11 0x55f23e2cf9c6 in reftable_ref_iterator_advance refs/reftable-backend.c:464 #12 0x55f23e2d996e in ref_iterator_advance refs/iterator.c:13 #13 0x55f23e2d996e in do_for_each_ref_iterator refs/iterator.c:452 #14 0x55f23dca6767 in get_ref_map builtin/fetch.c:623 #15 0x55f23dca6767 in do_fetch builtin/fetch.c:1659 #16 0x55f23dca6767 in fetch_one builtin/fetch.c:2133 #17 0x55f23dca6767 in cmd_fetch builtin/fetch.c:2432 #18 0x55f23dba7764 in run_builtin git.c:484 #19 0x55f23dba7764 in handle_builtin git.c:741 #20 0x55f23dbab61e in run_argv git.c:805 #21 0x55f23dbab61e in cmd_main git.c:1000 #22 0x55f23dba4781 in main common-main.c:64 #23 0x7fa0f063fc89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 #24 0x7fa0f063fd44 in __libc_start_main_impl ../csu/libc-start.c:360 #25 0x55f23dba6ad0 in _start (git+0xadfad0) (BuildId: 803b2b7f59beb03d7849fb8294a8e2145dd4aa27) While it is somewhat awkward that the maintenance processes survive tests in the first place, it is totally expected that reftables should work alright with concurrent writers. Seemingly they don't. The only underlying resource that we need to care about in this context is the reftable reader, which is responsible for reading a single table from disk. These readers get discarded immediately (unless reused) when calling `reftable_stack_reload()`, which is wrong. We can only close them once we know that there are no iterators using them anymore. Prepare for a fix by converting the reftable readers to be refcounted. Reported-by: Jeff King <peff@peff.net> Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This is the first reviewable piece of the work to create the packed-refs v2 file format.
Next Steps