-
Notifications
You must be signed in to change notification settings - Fork 3
/
pipeline.py
104 lines (93 loc) · 4.06 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2021 QuantumBlack Visual Analytics Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
# NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS
# BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo
# (either separately or in combination, "QuantumBlack Trademarks") are
# trademarks of QuantumBlack. The License does not grant you any right or
# license to the QuantumBlack Trademarks. You may not use the QuantumBlack
# Trademarks or any confusingly similar mark as a trademark for your product,
# or use the QuantumBlack Trademarks in any other manner that might cause
# confusion in the marketplace, including but not limited to in advertising,
# on websites, or on software.
#
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is a boilerplate pipeline 'preprocess'
generated using Kedro 0.17.3
"""
from kedro.pipeline import Pipeline, node
from kedro_tf_image.pipelines.preprocess.nodes import add_layer, autotune_standardize, get_tf_datasets, load_data_from_partitioned_dataset, load_data_from_url, passon
# input = input and output = output
def create_download_pipeline(input="csvfilewithurls", output="imageset", **kwargs):
return Pipeline([
node(
load_data_from_url, # Optional parameter delay, defaults to 3 seconds between each call
input,
output,
name="download_pipeline"
),
])
def create_folder_pipeline(input="imagefolder", output="processeddataset", **kwargs): # input = input and output = output
return Pipeline([
node(
autotune_standardize,
input,
output,
name="folder_pipeline"
),
])
def create_passon_pipeline(input="imagefolder", output="datasetinmemory", **kwargs):
return Pipeline([
node(
passon,
input,
output,
name="passon_pipeline"
),
])
# input = input and output = output
def create_multilabel_pipeline(input="imageset", output="processeddataset", **kwargs):
return Pipeline([
node(
load_data_from_partitioned_dataset,
input,
"data_from_partitioned_dataset",
name="read_partitioned_data"
),
node(
get_tf_datasets,
["data_from_partitioned_dataset", "parameters"],
"datasetinmemory", # requires copy_mode: assign
name="create_datasets"
),
node(
autotune_standardize,
"datasetinmemory",
output,
name="multilabel_pipeline"
),
])
def create_classification_layer(**kwargs):
return Pipeline([
node(
add_layer,
inputs=["chexnet_weights", "params:add_layer"],
outputs="chexnet_model",
name="add_classification_layer",
tags=["chexnet"]
),
])