forked from vsmolyakov/ml_algo_in_depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sim_annealing.py
117 lines (92 loc) · 3.46 KB
/
sim_annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
class simulated_annealing():
def __init__(self):
self.max_iter = 1000
self.conv_thresh = 1e-4
self.conv_window = 10
self.samples = np.zeros((self.max_iter, 2))
self.energies = np.zeros(self.max_iter)
self.temperatures = np.zeros(self.max_iter)
def target(self, x, y):
z = 3*(1-x)**2 * np.exp(-x**2 - (y+1)**2) \
- 10*(x/5 -x**3 - y**5) * np.exp(-x**2 - y**2) \
- (1/3)*np.exp(-(x+1)**2 - y**2)
return z
def proposal(self, x, y):
mean = np.array([x, y])
cov = 1.1 * np.eye(2)
x_new, y_new = np.random.multivariate_normal(mean, cov)
return x_new, y_new
def temperature_schedule(self, T, iter):
return 0.9 * T
def run(self, x_init, y_init):
converged = False
T = 1
self.temperatures[0] = T
num_accepted = 0
x_old, y_old = x_init, y_init
energy_old = self.target(x_init, y_init)
iter = 1
while not converged:
print("iter: {:4d}, temp: {:.4f}, energy = {:.6f}".format(iter, T, energy_old))
x_new, y_new = self.proposal(x_old, y_old)
energy_new = self.target(x_new, y_new)
#check convergence
if iter > 2*self.conv_window:
vals = self.energies[iter-self.conv_window : iter-1]
if (np.std(vals) < self.conv_thresh):
converged = True
#end if
#end if
alpha = np.exp((energy_old - energy_new)/T)
r = np.minimum(1, alpha)
u = np.random.uniform(0, 1)
if u < r:
x_old, y_old = x_new, y_new
num_accepted += 1
energy_old = energy_new
#end if
self.samples[iter, :] = np.array([x_old, y_old])
self.energies[iter] = energy_old
T = self.temperature_schedule(T, iter)
self.temperatures[iter] = T
iter = iter + 1
if (iter > self.max_iter): converged = True
#end while
niter = iter - 1
acceptance_rate = num_accepted / niter
print("acceptance rate: ", acceptance_rate)
x_opt, y_opt = x_old, y_old
return x_opt, y_opt, self.samples[:niter,:], self.energies[:niter], self.temperatures[:niter]
if __name__ == "__main__":
SA = simulated_annealing()
nx, ny = (1000, 1000)
x = np.linspace(-2, 2, nx)
y = np.linspace(-2, 2, ny)
xv, yv = np.meshgrid(x, y)
z = SA.target(xv, yv)
plt.figure()
plt.contourf(x, y, z)
plt.title("energy landscape")
plt.show()
#find global minimum by exhaustive search
min_search = np.min(z)
argmin_search = np.argwhere(z == min_search)
xmin, ymin = argmin_search[0][0], argmin_search[0][1]
print("global minimum (exhaustive search): ", min_search)
print("located at (x, y): ", x[xmin], y[ymin])
#find global minimum by simulated annealing
x_init, y_init = 0, 0
x_opt, y_opt, samples, energies, temperatures = SA.run(x_init, y_init)
print("global minimum (simulated annealing): ", energies[-1])
print("located at (x, y): ", x_opt, y_opt)
plt.figure()
plt.plot(energies)
plt.title("SA sampled energies")
plt.show()
plt.figure()
plt.plot(temperatures)
plt.title("Temperature Schedule")
plt.show()