Create EMR cluster using AWS EMR console or aws cli. The script below creates ten r3.2xlarge slaves cluster. Replace the following parameters with correct values:
- subnet-xxxxxxx
- us-west-1
- KeyName=spark
aws emr create-cluster --name jobserver_test --release-label emr-4.2.0 \
--instance-groups InstanceCount=1,Name=sparkMaster,InstanceGroupType=MASTER,InstanceType=m3.xlarge \
InstanceCount=10,BidPrice=2.99,Name=sparkSlave,InstanceGroupType=CORE,InstanceType=r3.2xlarge \
--applications Name=Hadoop Name=Spark \
--ec2-attributes KeyName=spark,SubnetId=subnet-xxxxxxx --region us-west-1 \
--use-default-roles
- Ssh to master box using cluster Key file
ssh -i <key>.pem hadoop@<master_ip>
- Create required folders in /mnt
mkdir /mnt/work
mkdir -p /mnt/lib/.ivy2
ln -s /mnt/lib/.ivy2 ~/.ivy2
- Create spark-jobserver log dirs
mkdir /mnt/var/log/spark-jobserver
- Install sbt 0.13.9 as described here http://www.scala-sbt.org/0.13/tutorial/Manual-Installation.html
- Install jdk 1.7.0 and git
sudo yum install java-1.7.0-openjdk-devel git
- Clone spark-jobserver and checkout release v0.6.1
cd /mnt/work
git clone https://github.com/spark-jobserver/spark-jobserver.git
cd spark-jobserver
git checkout v0.6.1
- Build spark-jobserver
sbt clean update package assembly
- Create config/emr.sh
APP_USER=hadoop
APP_GROUP=hadoop
INSTALL_DIR=/mnt/lib/spark-jobserver
LOG_DIR=/mnt/var/log/spark-jobserver
PIDFILE=spark-jobserver.pid
JOBSERVER_MEMORY=1G
SPARK_VERSION=1.6.0
SPARK_HOME=/usr/lib/spark
SPARK_CONF_DIR=/etc/spark/conf
HADOOP_CONF_DIR=/etc/hadoop/conf
YARN_CONF_DIR=/etc/hadoop/conf
SCALA_VERSION=2.10.5
- Create config/emr.conf
spark {
# spark.master will be passed to each job's JobContext
master = "yarn-client"
jobserver {
port = 8090
# Note: JobFileDAO is deprecated from v0.7.0 because of issues in
# production and will be removed in future, now defaults to H2 file.
jobdao = spark.jobserver.io.JobSqlDAO
filedao {
rootdir = /mnt/tmp/spark-jobserver/filedao/data
}
sqldao {
# Slick database driver, full classpath
slick-driver = slick.driver.H2Driver
# JDBC driver, full classpath
jdbc-driver = org.h2.Driver
# Directory where default H2 driver stores its data. Only needed for H2.
rootdir = /tmp/spark-jobserver/sqldao/data
# Full JDBC URL / init string, along with username and password. Sorry, needs to match above.
# Substitutions may be used to launch job-server, but leave it out here in the default or tests won't pass
jdbc {
url = "jdbc:h2:file:/tmp/spark-jobserver/sqldao/data/h2-db"
user = ""
password = ""
}
# DB connection pool settings
dbcp {
enabled = false
maxactive = 20
maxidle = 10
initialsize = 10
}
}
}
# predefined Spark contexts
contexts {
# test {
# num-cpu-cores = 1 # Number of cores to allocate. Required.
# memory-per-node = 1g # Executor memory per node, -Xmx style eg 512m, 1G, etc.
# spark.executor.instances = 1
# }
# define additional contexts here
}
# universal context configuration. These settings can be overridden, see README.md
context-settings {
num-cpu-cores = 4 # Number of cores to allocate. Required.
memory-per-node = 8g # Executor memory per node, -Xmx style eg 512m, #1G, etc.
spark.executor.instances = 2
# If you wish to pass any settings directly to the sparkConf as-is, add them here in passthrough,
# such as hadoop connection settings that don't use the "spark." prefix
passthrough {
#es.nodes = "192.1.1.1"
}
}
# This needs to match SPARK_HOME for cluster SparkContexts to be created successfully
home = "/usr/lib/spark"
}
- Build tar.gz package. The package location will be /tmp/job-server/job-server.tar.gz
bin/server_package.sh emr
-
Ssh to master box using cluster Key file
-
Create directory for spark-jobserver and extract job-server.tar.gz into it
mkdir /mnt/lib/spark-jobserver
cd /mnt/lib/spark-jobserver
tar zxf /tmp/job-server/job-server.tar.gz
-
Check emr.conf and settings.sh
-
Start jobserver
./server_start.sh
- Check logs
tail -300f /mnt/var/log/spark-jobserver/spark-job-server.log
- To stop jobserver run
./server_stop.sh
- Check current status
# check current jars
curl localhost:8090/jars
# check current contexts
curl localhost:8090/contexts
- Upload jobserver example jar to testapp
curl --data-binary @/mnt/work/spark-jobserver/job-server-tests/target/scala-2.10/job-server-tests_2.10-0.6.1.jar \
localhost:8090/jars/testapp
# check current jars. should return testapp
curl localhost:8090/jars
- Create test context
# create test context
curl -d "" 'localhost:8090/contexts/test?num-cpu-cores=1&memory-per-node=512m&spark.executor.instances=1'
# check current contexts. should return test
curl localhost:8090/contexts
- Run WordCount example
# run WordCount example (should be done in 1-2 sec)
curl -d "input.string = a b c a b see" \
'localhost:8090/jobs?appName=testapp&classPath=spark.jobserver.WordCountExample&context=test&sync=true'
- Check jobs
# check jobs
curl localhost:8090/jobs
- Check YARN website on port 8088. It should be Spark application RUNNING for test context.
- If for some reason spark-jobserver can not start Spark Application on Yarn cluster you can try to open Spark Shell and check if it can start Spark Application on Yarn cluster
spark-shell \
--num-executors 1 \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1
-
Check yarn website on port 8088. Spark-shell application should be have RUNNING status
-
Run the following test command in Spark Shell to test spark-shell yarn application
sc.parallelize(1 to 10, 1).count
- If shell works but spark-jobserver still does not work check logs
- on jobserver /var/log/spark-jobserver/spark-job-server.log
- on Cluster: Yarn App logs (website on port 8088)
- on Cluster: Containers stderr, stdout (website on port 8088)
- Make sure spark-jobserver uses EMR default spark installed in /usr/lib/spark