-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathcorrectGCBias.py
746 lines (620 loc) · 25.5 KB
/
correctGCBias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import shutil
import time
import subprocess
import sys
import py2bit
import pysam
import multiprocessing
import numpy as np
import argparse
from scipy.stats import binom
from deeptools.utilities import tbitToBamChrName, getGC_content
from deeptools import writeBedGraph, parserCommon, mapReduce
from deeptools import utilities
from deeptools.bamHandler import openBam
old_settings = np.seterr(all='ignore')
def parse_arguments(args=None):
parentParser = parserCommon.getParentArgParse(binSize=True, blackList=False)
requiredArgs = getRequiredArgs()
parser = argparse.ArgumentParser(
parents=[requiredArgs, parentParser],
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='This tool corrects the GC-bias using the'
' method proposed by [Benjamini & Speed (2012). '
'Nucleic Acids Research, 40(10)]. It will remove reads'
' from regions with too high coverage compared to the'
' expected values (typically GC-rich regions) and will'
' add reads to regions where too few reads are seen '
'(typically AT-rich regions). '
'The tool ``computeGCBias`` needs to be run first to generate the '
'frequency table needed here.',
usage='An example usage is:\n correctGCBias '
'-b file.bam --effectiveGenomeSize 2150570000 -g mm9.2bit '
'--GCbiasFrequenciesFile freq.txt -o gc_corrected.bam '
'[options]',
conflict_handler='resolve',
add_help=False)
return parser
def process_args(args=None):
args = parse_arguments().parse_args(args)
return args
def getRequiredArgs():
parser = argparse.ArgumentParser(add_help=False)
required = parser.add_argument_group('Required arguments')
# define the arguments
required.add_argument('--bamfile', '-b',
metavar='BAM file',
help='Sorted BAM file to correct.',
required=True)
required.add_argument('--effectiveGenomeSize',
help='The effective genome size is the portion '
'of the genome that is mappable. Large fractions of '
'the genome are stretches of NNNN that should be '
'discarded. Also, if repetitive regions were not '
'included in the mapping of reads, the effective '
'genome size needs to be adjusted accordingly. '
'A table of values is available here: '
'http://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.html .',
default=None,
type=int,
required=True)
required.add_argument('--genome', '-g',
help='Genome in two bit format. Most genomes can be '
'found here: http://hgdownload.cse.ucsc.edu/gbdb/ '
'Search for the .2bit ending. Otherwise, fasta '
'files can be converted to 2bit using faToTwoBit '
'available here: '
'http://hgdownload.cse.ucsc.edu/admin/exe/',
metavar='two bit file',
required=True)
required.add_argument('--GCbiasFrequenciesFile', '-freq',
help='Indicate the output file from '
'computeGCBias containing '
'the observed and expected read frequencies per GC-'
'content.',
type=argparse.FileType('r'),
metavar='FILE',
required=True)
output = parser.add_argument_group('Output options')
output.add_argument('--correctedFile', '-o',
help='Name of the corrected file. The ending will '
'be used to decide the output file format. The options '
'are ".bam", ".bw" for a bigWig file, ".bg" for a '
'bedGraph file.',
metavar='FILE',
type=argparse.FileType('w'),
required=True)
# define the optional arguments
optional = parser.add_argument_group('Optional arguments')
optional.add_argument("--help", "-h", action="help",
help="show this help message and exit")
return parser
def getReadGCcontent(tbit, read, fragmentLength, chrNameBit):
"""
The fragments for forward and reverse reads are defined as follows::
|- read.pos |- read.aend
---+=================>-----------------------+--------- Forward strand
|-fragStart |-fragEnd
---+-----------------------<=================+--------- Reverse strand
|-read.pos |-read.aend
|-----------------------------------------|
read.tlen
"""
fragStart = None
fragEnd = None
if read.is_paired and read.is_proper_pair and abs(read.tlen) < 2 * fragmentLength:
if read.is_reverse and read.tlen < 0:
fragEnd = read.reference_end
fragStart = read.reference_end + read.template_length
elif read.template_length >= read.query_alignment_length:
fragStart = read.pos
fragEnd = read.pos + read.template_length
if not fragStart:
if read.is_reverse:
fragEnd = read.reference_end
fragStart = read.reference_end - fragmentLength
else:
fragStart = read.pos
fragEnd = fragStart + fragmentLength
fragStart = max(0, fragStart)
try:
gc = getGC_content(tbit, chrNameBit, fragStart, fragEnd)
except Exception:
return None
if gc is None:
return None
# match the gc to the given fragmentLength
gc = int(np.round(gc * fragmentLength))
return gc
def writeCorrected_wrapper(args):
return writeCorrected_worker(*args)
def writeCorrected_worker(chrNameBam, chrNameBit, start, end, step):
r"""writes a bedgraph file containing the GC correction of
a region from the genome
>>> test = Tester()
>>> tempFile = writeCorrected_worker(*test.testWriteCorrectedChunk())
>>> open(tempFile, 'r').readlines()
['chr2L\t200\t225\t31.6\n', 'chr2L\t225\t250\t33.8\n', 'chr2L\t250\t275\t37.9\n', 'chr2L\t275\t300\t40.9\n']
>>> os.remove(tempFile)
"""
global R_gc
fragmentLength = len(R_gc) - 1
cvg_corr = np.zeros(end - start)
i = 0
tbit = py2bit.open(global_vars['2bit'])
bam = openBam(global_vars['bam'])
read_repetitions = 0
removed_duplicated_reads = 0
startTime = time.time()
# caching seems to be faster
# r.flag & 4 == 0 is to skip unmapped
# reads that nevertheless are asigned
# to a genomic position
reads = [r for r in bam.fetch(chrNameBam, start, end)
if r.flag & 4 == 0]
bam.close()
r_index = -1
for read in reads:
if read.is_unmapped:
continue
r_index += 1
try:
# calculate GC content of read fragment
gc = getReadGCcontent(tbit, read, fragmentLength,
chrNameBit)
except Exception as detail:
print(detail)
""" this exception happens when the end of a
chromosome is reached """
continue
if not gc:
continue
# is this read in the same orientation and position as the previous?
if r_index > 0 and read.pos == reads[r_index - 1].pos and \
read.is_reverse == reads[r_index - 1].is_reverse \
and read.pnext == reads[r_index - 1].pnext:
read_repetitions += 1
if read_repetitions >= global_vars['max_dup_gc'][gc]:
removed_duplicated_reads += 1
continue
else:
read_repetitions = 0
try:
fragmentStart, fragmentEnd = getFragmentFromRead(read, fragmentLength, extendPairedEnds=True)
vectorStart = max(fragmentStart - start, 0)
vectorEnd = min(fragmentEnd - start, end - start)
except TypeError:
# the get_fragment_from_read functions returns None in some cases.
# Those cases are to be skipped, hence the continue line.
continue
cvg_corr[vectorStart:vectorEnd] += float(1) / R_gc[gc]
i += 1
try:
if debug:
endTime = time.time()
print("{}, processing {} ({:.1f} per sec) ")
"reads @ {}:{}-{}".format(multiprocessing.current_process().name,
i, i / (endTime - startTime),
chrNameBit, start, end)
except NameError:
pass
if i == 0:
return None
_file = open(utilities.getTempFileName(suffix='.bg'), 'w')
# save in bedgraph format
for bin in range(0, len(cvg_corr), step):
value = np.mean(cvg_corr[bin:min(bin + step, end)])
if value > 0:
writeStart = start + bin
writeEnd = min(start + bin + step, end)
_file.write("%s\t%d\t%d\t%.1f\n" % (chrNameBit, writeStart,
writeEnd, value))
tempFileName = _file.name
_file.close()
return tempFileName
def numCopiesOfRead(value):
"""
Based int he R_gc value, decides
whether to keep, duplicate, triplicate or delete the read.
It returns an integer, that tells the number of copies of the read
that should be keep.
>>> np.random.seed(1)
>>> numCopiesOfRead(0.8)
1
>>> numCopiesOfRead(2.5)
2
>>> numCopiesOfRead(None)
1
"""
copies = 1
if value:
copies = int(value) + (1 if np.random.rand() < value % 1 else 0)
return copies
def writeCorrectedSam_wrapper(args):
return writeCorrectedSam_worker(*args)
def writeCorrectedSam_worker(chrNameBam, chrNameBit, start, end,
step=None,
tag_but_not_change_number=False,
verbose=True):
r"""
Writes a BAM file, deleting and adding some reads in order to compensate
for the GC bias. **This is a stochastic method.**
>>> np.random.seed(1)
>>> test = Tester()
>>> args = test.testWriteCorrectedSam()
>>> tempFile = writeCorrectedSam_worker(*args, \
... tag_but_not_change_number=True, verbose=False)
>>> try:
... import StringIO
... except ImportError:
... from io import StringIO
>>> ostdout = sys.stdout
>>> import tempfile
>>> sys.stdout = tempfile.TemporaryFile()
>>> idx = pysam.index(tempFile)
>>> sys.stdout = ostdout
>>> bam = pysam.Samfile(tempFile)
>>> [dict(r.tags)['YN'] for r in bam.fetch(args[0], 200, 250)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]
>>> res = os.remove(tempFile)
>>> res = os.remove(tempFile+".bai")
>>> tempFile = \
... writeCorrectedSam_worker(*test.testWriteCorrectedSam_paired(),\
... tag_but_not_change_number=True, verbose=False)
>>> sys.stdout = tempfile.TemporaryFile()
>>> idx = pysam.index(tempFile)
>>> sys.stdout = ostdout
>>> bam = pysam.Samfile(tempFile)
>>> [dict(r.tags)['YN'] for r in bam.fetch('chr2L', 0, 50)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> res = os.remove(tempFile)
>>> res = os.remove(tempFile+".bai")
"""
global R_gc
fragmentLength = len(R_gc) - 1
if verbose:
print("Sam for %s %s %s " % (chrNameBit, start, end))
i = 0
tbit = py2bit.open(global_vars['2bit'])
bam = openBam(global_vars['bam'])
tempFileName = utilities.getTempFileName(suffix='.bam')
outfile = pysam.Samfile(tempFileName, 'wb', template=bam)
startTime = time.time()
matePairs = {}
read_repetitions = 0
removed_duplicated_reads = 0
# cache data
# r.flag & 4 == 0 is to filter unmapped reads that
# have a genomic position
reads = [r for r in bam.fetch(chrNameBam, start, end)
if r.pos > start and r.flag & 4 == 0]
r_index = -1
for read in reads:
if read.pos <= start or read.is_unmapped:
continue
r_index += 1
copies = None
gc = None
# check if a mate has already been procesed
# to apply the same correction
try:
copies = matePairs[read.qname]['copies']
gc = matePairs[read.qname]['gc']
del(matePairs[read.qname])
except:
# this exception happens when a mate is
# not present. This could
# happen because of removal of the mate
# by some filtering
gc = getReadGCcontent(tbit, read, fragmentLength,
chrNameBit)
if gc:
copies = numCopiesOfRead(float(1) / R_gc[gc])
else:
copies = 1
# is this read in the same orientation and position as the previous?
if gc and r_index > 0 and read.pos == reads[r_index - 1].pos \
and read.is_reverse == reads[r_index - 1].is_reverse \
and read.pnext == reads[r_index - 1].pnext:
read_repetitions += 1
if read_repetitions >= global_vars['max_dup_gc'][gc]:
copies = 0 # in other words do not take into account this read
removed_duplicated_reads += 1
else:
read_repetitions = 0
readName = read.qname
# Each tag is a tuple of (tag name, value, type)
# Note that get_tags() returns ord(type) rather than type and this must
# be fixed!
# It turns out that the "with_value_type" option only started working in
# pysam-0.8.4, so we can't reliably add tags on earlier versions without
# potentially creating BAM files that break HTSJDK/IGV/etc.
readTag = read.get_tags(with_value_type=True)
replace_tags = False
if len(readTag) > 0:
if len(readTag[0]) == 3:
if type(readTag[2]) is int:
readTag = [(x[0], x[1], chr(x[2])) for x in readTag]
replace_tags = True
else:
replace_tags = True
if gc:
GC = int(100 * np.round(float(gc) / fragmentLength,
decimals=2))
readTag.append(
('YC', float(round(float(1) / R_gc[gc], 2)), "f"))
readTag.append(('YN', copies, "i"))
else:
GC = -1
readTag.append(('YG', GC, "i"))
if replace_tags:
read.set_tags(readTag)
if read.is_paired and read.is_proper_pair \
and not read.mate_is_unmapped \
and not read.is_reverse:
matePairs[readName] = {'copies': copies,
'gc': gc}
"""
outfile.write(read)
"""
if tag_but_not_change_number:
outfile.write(read)
continue
for numCop in range(1, copies + 1):
# the read has to be renamed such that newly
# formed pairs will match
if numCop > 1:
read.qname = readName + "_%d" % (numCop)
outfile.write(read)
if verbose:
if i % 500000 == 0 and i > 0:
endTime = time.time()
print("{}, processing {} ({:.1f} per sec) reads "
"@ {}:{}-{}".format(multiprocessing.current_process().name,
i, i / (endTime - startTime),
chrNameBit, start, end))
i += 1
outfile.close()
if verbose:
endTime = time.time()
print("{}, processing {} ({:.1f} per sec) reads "
"@ {}:{}-{}".format(multiprocessing.current_process().name,
i, i / (endTime - startTime),
chrNameBit, start, end))
percentage = float(removed_duplicated_reads) * 100 / len(reads) \
if len(reads) > 0 else 0
print("duplicated reads removed %d of %d (%.2f) " %
(removed_duplicated_reads, len(reads), percentage))
return tempFileName
def getFragmentFromRead(read, defaultFragmentLength, extendPairedEnds=True):
"""
The read has to be pysam object.
The following values are defined (for forward reads)::
|-- -- read.tlen -- --|
|-- read.alen --|
-----|===============>------------<==============|----
| | |
read.pos read.aend read.pnext
and for reverse reads
|-- -- read.tlen -- --|
|-- read.alen --|
-----|===============>-----------<===============|----
| | |
read.pnext read.pos read.aend
this is a sketch of a pair-end reads
The function returns the fragment start and end, either
using the paired end information (if available) or
extending the read in the appropriate direction if this
is single-end.
Parameters
----------
read : pysam read object
Returns
-------
tuple
(fragment start, fragment end)
"""
# convert reads to fragments
# this option indicates that the paired ends correspond
# to the fragment ends
# condition read.tlen < maxPairedFragmentLength is added to avoid read pairs
# that span thousands of base pairs
if extendPairedEnds is True and read.is_paired and 0 < abs(read.tlen) < 1000:
if read.is_reverse:
fragmentStart = read.pnext
fragmentEnd = read.aend
else:
fragmentStart = read.pos
# the end of the fragment is defined as
# the start of the forward read plus the insert length
fragmentEnd = read.pos + read.tlen
else:
if defaultFragmentLength <= read.aend - read.pos:
fragmentStart = read.pos
fragmentEnd = read.aend
else:
if read.is_reverse:
fragmentStart = read.aend - defaultFragmentLength
fragmentEnd = read.aend
else:
fragmentStart = read.pos
fragmentEnd = read.pos + defaultFragmentLength
return fragmentStart, fragmentEnd
def run_shell_command(command):
"""
Runs the given shell command. Report
any errors found.
"""
try:
subprocess.check_call(command, shell=True)
except subprocess.CalledProcessError as error:
sys.stderr.write('Error{}\n'.format(error))
exit(1)
except Exception as error:
sys.stderr.write('Error: {}\n'.format(error))
exit(1)
def main(args=None):
args = process_args(args)
global F_gc, N_gc, R_gc
data = np.loadtxt(args.GCbiasFrequenciesFile.name)
F_gc = data[:, 0]
N_gc = data[:, 1]
R_gc = data[:, 2]
global global_vars
global_vars = {}
global_vars['2bit'] = args.genome
global_vars['bam'] = args.bamfile
# compute the probability to find more than one read (a redundant read)
# at a certain position based on the gc of the read fragment
# the binomial function is used for that
max_dup_gc = [binom.isf(1e-7, F_gc[x], 1.0 / N_gc[x])
if F_gc[x] > 0 and N_gc[x] > 0 else 1
for x in range(len(F_gc))]
global_vars['max_dup_gc'] = max_dup_gc
tbit = py2bit.open(global_vars['2bit'])
bam, mapped, unmapped, stats = openBam(args.bamfile, returnStats=True, nThreads=args.numberOfProcessors)
global_vars['genome_size'] = sum(tbit.chroms().values())
global_vars['total_reads'] = mapped
global_vars['reads_per_bp'] = \
float(global_vars['total_reads']) / args.effectiveGenomeSize
# apply correction
print("applying correction")
# divide the genome in fragments containing about 4e5 reads.
# This amount of reads takes about 20 seconds
# to process per core (48 cores, 256 Gb memory)
chunkSize = int(4e5 / global_vars['reads_per_bp'])
# chromSizes: list of tuples
chromSizes = [(bam.references[i], bam.lengths[i])
for i in range(len(bam.references))]
regionStart = 0
if args.region:
chromSizes, regionStart, regionEnd, chunkSize = \
mapReduce.getUserRegion(chromSizes, args.region,
max_chunk_size=chunkSize)
print("genome partition size for multiprocessing: {}".format(chunkSize))
print("using region {}".format(args.region))
mp_args = []
bedGraphStep = args.binSize
chrNameBitToBam = tbitToBamChrName(list(tbit.chroms().keys()), bam.references)
chrNameBamToBit = dict([(v, k) for k, v in chrNameBitToBam.items()])
print(chrNameBitToBam, chrNameBamToBit)
c = 1
for chrom, size in chromSizes:
start = 0 if regionStart == 0 else regionStart
for i in range(start, size, chunkSize):
try:
chrNameBamToBit[chrom]
except KeyError:
print("no sequence information for ")
"chromosome {} in 2bit file".format(chrom)
print("Reads in this chromosome will be skipped")
continue
length = min(size, i + chunkSize)
mp_args.append((chrom, chrNameBamToBit[chrom], i, length,
bedGraphStep))
c += 1
pool = multiprocessing.Pool(args.numberOfProcessors)
if args.correctedFile.name.endswith('bam'):
if len(mp_args) > 1 and args.numberOfProcessors > 1:
print(("using {} processors for {} "
"number of tasks".format(args.numberOfProcessors,
len(mp_args))))
res = pool.map_async(
writeCorrectedSam_wrapper, mp_args).get(9999999)
else:
res = list(map(writeCorrectedSam_wrapper, mp_args))
if len(res) == 1:
command = "cp {} {}".format(res[0], args.correctedFile.name)
run_shell_command(command)
else:
print("concatenating (sorted) intermediate BAMs")
header = pysam.Samfile(res[0])
of = pysam.Samfile(args.correctedFile.name, "wb", template=header)
header.close()
for f in res:
f = pysam.Samfile(f)
for e in f.fetch(until_eof=True):
of.write(e)
f.close()
of.close()
print("indexing BAM")
pysam.index(args.correctedFile.name)
for tempFileName in res:
os.remove(tempFileName)
if args.correctedFile.name.endswith('bg') or \
args.correctedFile.name.endswith('bw'):
if len(mp_args) > 1 and args.numberOfProcessors > 1:
res = pool.map_async(writeCorrected_wrapper, mp_args).get(9999999)
else:
res = list(map(writeCorrected_wrapper, mp_args))
oname = args.correctedFile.name
args.correctedFile.close()
if oname.endswith('bg'):
f = open(oname, 'wb')
for tempFileName in res:
if tempFileName:
shutil.copyfileobj(open(tempFileName, 'rb'), f)
os.remove(tempFileName)
f.close()
else:
chromSizes = [(k, v) for k, v in tbit.chroms().items()]
writeBedGraph.bedGraphToBigWig(chromSizes, res, oname)
class Tester():
def __init__(self):
import os
self.root = os.path.dirname(os.path.abspath(__file__)) + "/test/test_corrGC/"
self.tbitFile = self.root + "sequence.2bit"
self.bamFile = self.root + "test.bam"
self.chrNameBam = '2L'
self.chrNameBit = 'chr2L'
bam, mapped, unmapped, stats = openBam(self.bamFile, returnStats=True)
tbit = py2bit.open(self.tbitFile)
global debug
debug = 0
global global_vars
global_vars = {'2bit': self.tbitFile,
'bam': self.bamFile,
'filter_out': None,
'extra_sampling_file': None,
'max_reads': 5,
'min_reads': 0,
'min_reads': 0,
'reads_per_bp': 0.3,
'total_reads': mapped,
'genome_size': sum(tbit.chroms().values())}
def testWriteCorrectedChunk(self):
""" prepare arguments for test
"""
global R_gc, R_gc_min, R_gc_max
R_gc = np.loadtxt(self.root + "R_gc_paired.txt")
global_vars['max_dup_gc'] = np.ones(301)
start = 200
end = 300
bedGraphStep = 25
return (self.chrNameBam,
self.chrNameBit, start, end, bedGraphStep)
def testWriteCorrectedSam(self):
""" prepare arguments for test
"""
global R_gc, R_gc_min, R_gc_max
R_gc = np.loadtxt(self.root + "R_gc_paired.txt")
global_vars['max_dup_gc'] = np.ones(301)
start = 200
end = 250
return (self.chrNameBam,
self.chrNameBit, start, end)
def testWriteCorrectedSam_paired(self):
""" prepare arguments for test.
"""
global R_gc, R_gc_min, R_gc_max
R_gc = np.loadtxt(self.root + "R_gc_paired.txt")
start = 0
end = 500
global global_vars
global_vars['bam'] = self.root + "paired.bam"
return 'chr2L', 'chr2L', start, end
if __name__ == "__main__":
main()