forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* refactor docs * add docs * add modelzoo * refactor getting started
- Loading branch information
Showing
15 changed files
with
755 additions
and
470 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
## Prepare datasets | ||
|
||
It is recommended to symlink the dataset root to `$MMSEGMENTATION/data`. | ||
If your folder structure is different, you may need to change the corresponding paths in config files. | ||
|
||
```none | ||
mmsegmentation | ||
├── mmseg | ||
├── tools | ||
├── configs | ||
├── data | ||
│ ├── cityscapes | ||
│ │ ├── leftImg8bit | ||
│ │ │ ├── train | ||
│ │ │ ├── val | ||
│ │ ├── gtFine | ||
│ │ │ ├── train | ||
│ │ │ ├── val | ||
│ ├── VOCdevkit | ||
│ │ ├── VOC2012 | ||
│ │ │ ├── JPEGImages | ||
│ │ │ ├── SegmentationClass | ||
│ │ │ ├── ImageSets | ||
│ │ │ │ ├── Segmentation | ||
│ │ ├── VOC2010 | ||
│ │ │ ├── JPEGImages | ||
│ │ │ ├── SegmentationClassContext | ||
│ │ │ ├── ImageSets | ||
│ │ │ │ ├── SegmentationContext | ||
│ │ │ │ │ ├── train.txt | ||
│ │ │ │ │ ├── val.txt | ||
│ │ │ ├── trainval_merged.json | ||
│ │ ├── VOCaug | ||
│ │ │ ├── dataset | ||
│ │ │ │ ├── cls | ||
│ ├── ade | ||
│ │ ├── ADEChallengeData2016 | ||
│ │ │ ├── annotations | ||
│ │ │ │ ├── training | ||
│ │ │ │ ├── validation | ||
│ │ │ ├── images | ||
│ │ │ │ ├── training | ||
│ │ │ │ ├── validation | ||
│ ├── CHASE_DB1 | ||
│ │ ├── images | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ │ ├── annotations | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ ├── DRIVE | ||
│ │ ├── images | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ │ ├── annotations | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ ├── HRF | ||
│ │ ├── images | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ │ ├── annotations | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ ├── STARE | ||
│ │ ├── images | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
│ │ ├── annotations | ||
│ │ │ ├── training | ||
│ │ │ ├── validation | ||
``` | ||
|
||
### Cityscapes | ||
|
||
The data could be found [here](https://www.cityscapes-dataset.com/downloads/) after registration. | ||
|
||
By convention, `**labelTrainIds.png` are used for cityscapes training. | ||
We provided a [scripts](https://github.com/open-mmlab/mmsegmentation/blob/master/tools/convert_datasets/cityscapes.py) based on [cityscapesscripts](https://github.com/mcordts/cityscapesScripts) | ||
to generate `**labelTrainIds.png`. | ||
|
||
```shell | ||
# --nproc means 8 process for conversion, which could be omitted as well. | ||
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8 | ||
``` | ||
|
||
### Pascal VOC | ||
|
||
Pascal VOC 2012 could be downloaded from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar). | ||
Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found [here](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz). | ||
|
||
If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format. | ||
|
||
```shell | ||
# --nproc means 8 process for conversion, which could be omitted as well. | ||
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8 | ||
``` | ||
|
||
Please refer to [concat dataset](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/tutorials/new_dataset.md#concatenate-dataset) for details about how to concatenate them and train them together. | ||
|
||
### ADE20K | ||
|
||
The training and validation set of ADE20K could be download from this [link](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip). | ||
We may also download test set from [here](http://data.csail.mit.edu/places/ADEchallenge/release_test.zip). | ||
|
||
### Pascal Context | ||
|
||
The training and validation set of Pascal Context could be download from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar). You may also download test set from [here](http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2010test.tar) after registration. | ||
|
||
To split the training and validation set from original dataset, you may download trainval_merged.json from [here](https://codalabuser.blob.core.windows.net/public/trainval_merged.json). | ||
|
||
If you would like to use Pascal Context dataset, please install [Detail](https://github.com/zhanghang1989/detail-api) and then run the following command to convert annotations into proper format. | ||
|
||
```shell | ||
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json | ||
``` | ||
|
||
### CHASE DB1 | ||
|
||
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip). | ||
|
||
To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command: | ||
|
||
```shell | ||
python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip | ||
``` | ||
|
||
The script will make directory structure automatically. | ||
|
||
### DRIVE | ||
|
||
The training and validation set of DRIVE could be download from [here](https://drive.grand-challenge.org/). Before that, you should register an account. Currently '1st_manual' is not provided officially. | ||
|
||
To convert DRIVE dataset to MMSegmentation format, you should run the following command: | ||
|
||
```shell | ||
python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip | ||
``` | ||
|
||
The script will make directory structure automatically. | ||
|
||
### HRF | ||
|
||
First, download [healthy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip), [glaucoma.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip), [diabetic_retinopathy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip), [healthy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip), [glaucoma_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip) and [diabetic_retinopathy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip). | ||
|
||
To convert HRF dataset to MMSegmentation format, you should run the following command: | ||
|
||
```shell | ||
python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip | ||
``` | ||
|
||
The script will make directory structure automatically. | ||
|
||
### STARE | ||
|
||
First, download [stare-images.tar](http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar), [labels-ah.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar) and [labels-vk.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar). | ||
|
||
To convert STARE dataset to MMSegmentation format, you should run the following command: | ||
|
||
```shell | ||
python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar | ||
``` | ||
|
||
The script will make directory structure automatically. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.