Closed
Description
there has some comment:
//Load the data into memory then parallelize
//This isn't a good approach in general - but is simple to use for this example
DataSetIterator iterTrain = new MnistDataSetIterator(batchSizePerWorker, true, 12345);
DataSetIterator iterTest = new MnistDataSetIterator(batchSizePerWorker, true, 12345);
List<DataSet> trainDataList = new ArrayList<>();
List<DataSet> testDataList = new ArrayList<>();
while (iterTrain.hasNext()) {
trainDataList.add(iterTrain.next());
}
while (iterTest.hasNext()) {
testDataList.add(iterTest.next());
}
i know this way will limit by the machine memory.
do you have any advice about the good approch in parallelizing data?
Metadata
Metadata
Assignees
Labels
No labels