-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
340 lines (305 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import logging
import pickle
import numpy as np
import sklearn
from data import FaceImageIter
import mxnet as mx
from mxnet import ndarray as nd
import argparse
import mxnet.optimizer as optimizer
#import face_image
sys.path.append(os.path.join(os.path.dirname(__file__), 'symbols'))
import fresnet
import fmobilenet
logger = logging.getLogger()
logger.setLevel(logging.INFO)
AGE=100
args = None
class AccMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(AccMetric, self).__init__(
'acc', axis=self.axis,
output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count+=1
label = labels[0].asnumpy()[:,0:1]
pred_label = preds[-1].asnumpy()[:,0:2]
pred_label = np.argmax(pred_label, axis=self.axis)
pred_label = pred_label.astype('int32').flatten()
label = label.astype('int32').flatten()
assert label.shape==pred_label.shape
self.sum_metric += (pred_label.flat == label.flat).sum()
self.num_inst += len(pred_label.flat)
class LossValueMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(LossValueMetric, self).__init__(
'lossvalue', axis=self.axis,
output_names=None, label_names=None)
self.losses = []
def update(self, labels, preds):
loss = preds[-1].asnumpy()[0]
self.sum_metric += loss
self.num_inst += 1.0
gt_label = preds[-2].asnumpy()
#print(gt_label)
class MAEMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(MAEMetric, self).__init__(
'MAE', axis=self.axis,
output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count+=1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:,1:], axis=1)
pred_age = np.zeros( label_age.shape, dtype=np.int)
#pred_age = np.zeros( label_age.shape, dtype=np.float32)
pred = preds[-1].asnumpy()
for i in xrange(AGE):
_pred = pred[:,2+i*2:4+i*2]
_pred = np.argmax(_pred, axis=1)
#pred = pred[:,1]
pred_age += _pred
#pred_age = pred_age.astype(np.int)
mae = np.mean(np.abs(label_age - pred_age))
self.sum_metric += mae
self.num_inst += 1.0
class CUMMetric(mx.metric.EvalMetric):
def __init__(self, n=5):
self.axis = 1
self.n = n
super(CUMMetric, self).__init__(
'CUM_%d'%n, axis=self.axis,
output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count+=1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:,1:], axis=1)
pred_age = np.zeros( label_age.shape, dtype=np.int)
pred = preds[-1].asnumpy()
for i in xrange(AGE):
_pred = pred[:,2+i*2:4+i*2]
_pred = np.argmax(_pred, axis=1)
#pred = pred[:,1]
pred_age += _pred
diff = np.abs(label_age - pred_age)
cum = np.sum( (diff<self.n) )
self.sum_metric += cum
self.num_inst += len(label_age)
def parse_args():
parser = argparse.ArgumentParser(description='Train face network')
# general
parser.add_argument('--data-dir', default='', help='training set directory')
parser.add_argument('--prefix', default='../model/model', help='directory to save model.')
parser.add_argument('--pretrained', default='', help='pretrained model to load')
parser.add_argument('--ckpt', type=int, default=1, help='checkpoint saving option. 0: discard saving. 1: save when necessary. 2: always save')
parser.add_argument('--loss-type', type=int, default=4, help='loss type')
parser.add_argument('--verbose', type=int, default=2000, help='do verification testing and model saving every verbose batches')
parser.add_argument('--max-steps', type=int, default=0, help='max training batches')
parser.add_argument('--end-epoch', type=int, default=100000, help='training epoch size.')
parser.add_argument('--network', default='r50', help='specify network')
parser.add_argument('--image-size', default='112,112', help='specify input image height and width')
parser.add_argument('--version-input', type=int, default=1, help='network input config')
parser.add_argument('--version-output', type=str, default='GAP', help='network embedding output config')
parser.add_argument('--version-act', type=str, default='prelu', help='network activation config')
parser.add_argument('--multiplier', type=float, default=1.0, help='')
parser.add_argument('--lr', type=float, default=0.1, help='start learning rate')
parser.add_argument('--lr-steps', type=str, default='', help='steps of lr changing')
parser.add_argument('--wd', type=float, default=0.0005, help='weight decay')
parser.add_argument('--bn-mom', type=float, default=0.9, help='bn mom')
parser.add_argument('--mom', type=float, default=0.9, help='momentum')
parser.add_argument('--per-batch-size', type=int, default=128, help='batch size in each context')
parser.add_argument('--rand-mirror', type=int, default=1, help='if do random mirror in training')
parser.add_argument('--cutoff', type=int, default=0, help='cut off aug')
parser.add_argument('--color', type=int, default=0, help='color jittering aug')
parser.add_argument('--ce-loss', default=False, action='store_true', help='if output ce loss')
args = parser.parse_args()
return args
def get_symbol(args, arg_params, aux_params):
data_shape = (args.image_channel,args.image_h,args.image_w)
image_shape = ",".join([str(x) for x in data_shape])
margin_symbols = []
if args.network[0]=='m':
fc1 = fmobilenet.get_symbol(AGE*2+2,
multiplier = args.multiplier,
version_input=args.version_input,
version_output=args.version_output)
else:
fc1 = fresnet.get_symbol(AGE*2+2, args.num_layers,
version_input=args.version_input,
version_output=args.version_output)
label = mx.symbol.Variable('softmax_label')
gender_label = mx.symbol.slice_axis(data = label, axis=1, begin=0, end=1)
gender_label = mx.symbol.reshape(gender_label, shape=(args.per_batch_size,))
gender_fc1 = mx.symbol.slice_axis(data = fc1, axis=1, begin=0, end=2)
#gender_fc7 = mx.sym.FullyConnected(data=gender_fc1, num_hidden=2, name='gender_fc7')
gender_softmax = mx.symbol.SoftmaxOutput(data=gender_fc1, label = gender_label, name='gender_softmax', normalization='valid', use_ignore=True, ignore_label = 9999)
outs = [gender_softmax]
for i in range(AGE):
age_label = mx.symbol.slice_axis(data = label, axis=1, begin=i+1, end=i+2)
age_label = mx.symbol.reshape(age_label, shape=(args.per_batch_size,))
age_fc1 = mx.symbol.slice_axis(data = fc1, axis=1, begin=2+i*2, end=4+i*2)
#age_fc7 = mx.sym.FullyConnected(data=age_fc1, num_hidden=2, name='age_fc7_%i'%i)
age_softmax = mx.symbol.SoftmaxOutput(data=age_fc1, label = age_label, name='age_softmax_%d'%i, normalization='valid', grad_scale=1)
outs.append(age_softmax)
outs.append(mx.sym.BlockGrad(fc1))
out = mx.symbol.Group(outs)
return (out, arg_params, aux_params)
def train_net(args):
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd)>0:
for i in xrange(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx)==0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
prefix = args.prefix
prefix_dir = os.path.dirname(prefix)
if not os.path.exists(prefix_dir):
os.makedirs(prefix_dir)
end_epoch = args.end_epoch
args.ctx_num = len(ctx)
args.num_layers = int(args.network[1:])
print('num_layers', args.num_layers)
if args.per_batch_size==0:
args.per_batch_size = 128
args.batch_size = args.per_batch_size*args.ctx_num
args.rescale_threshold = 0
args.image_channel = 3
data_dir_list = args.data_dir.split(',')
assert len(data_dir_list)==1
data_dir = data_dir_list[0]
path_imgrec = None
path_imglist = None
image_size = [int(x) for x in args.image_size.split(',')]
assert len(image_size)==2
assert image_size[0]==image_size[1]
args.image_h = image_size[0]
args.image_w = image_size[1]
print('image_size', image_size)
path_imgrec = os.path.join(data_dir, "train.rec")
path_imgrec_val = os.path.join(data_dir, "val.rec")
print('Called with argument:', args)
data_shape = (args.image_channel,image_size[0],image_size[1])
mean = None
begin_epoch = 0
base_lr = args.lr
base_wd = args.wd
base_mom = args.mom
if len(args.pretrained)==0:
arg_params = None
aux_params = None
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
else:
vec = args.pretrained.split(',')
print('loading', vec)
_, arg_params, aux_params = mx.model.load_checkpoint(vec[0], int(vec[1]))
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
#label_name = 'softmax_label'
#label_shape = (args.batch_size,)
model = mx.mod.Module(
context = ctx,
symbol = sym,
)
val_dataiter = None
train_dataiter = FaceImageIter(
batch_size = args.batch_size,
data_shape = data_shape,
path_imgrec = path_imgrec,
shuffle = True,
rand_mirror = args.rand_mirror,
mean = mean,
cutoff = args.cutoff,
color_jittering = args.color,
)
val_dataiter = FaceImageIter(
batch_size = args.batch_size,
data_shape = data_shape,
path_imgrec = path_imgrec_val,
shuffle = False,
rand_mirror = False,
mean = mean,
)
metric = mx.metric.CompositeEvalMetric([AccMetric(), MAEMetric(), CUMMetric()])
if args.network[0]=='r' or args.network[0]=='y':
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style
elif args.network[0]=='i' or args.network[0]=='x':
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2) #inception
else:
initializer = mx.init.Xavier(rnd_type='uniform', factor_type="in", magnitude=2)
_rescale = 1.0/args.ctx_num
opt = optimizer.SGD(learning_rate=base_lr, momentum=base_mom, wd=base_wd, rescale_grad=_rescale)
#opt = optimizer.Nadam(learning_rate=base_lr, wd=base_wd, rescale_grad=_rescale)
som = 20
_cb = mx.callback.Speedometer(args.batch_size, som)
lr_steps = [int(x) for x in args.lr_steps.split(',')]
global_step = [0]
save_step = [0]
def _batch_callback(param):
_cb(param)
global_step[0]+=1
mbatch = global_step[0]
for _lr in lr_steps:
if mbatch==_lr:
opt.lr *= 0.1
print('lr change to', opt.lr)
break
if mbatch%1000==0:
print('lr-batch-epoch:',opt.lr,param.nbatch,param.epoch)
if args.max_steps>0 and mbatch>args.max_steps:
sys.exit(0)
def _epoch_callback(epoch, symbol, arg_params, aux_params):
save_step[0]+=1
msave = save_step[0]
do_save = False
if args.ckpt==0:
do_save = False
elif args.ckpt==2:
do_save = True
if do_save:
print('saving %s'%msave)
arg, aux = model.get_params()
all_layers = model.symbol.get_internals()
_sym = all_layers['fc1_output']
mx.model.save_checkpoint(args.prefix, msave, _sym, arg, aux)
train_dataiter = mx.io.PrefetchingIter(train_dataiter)
print('start fitting')
model.fit(train_dataiter,
begin_epoch = begin_epoch,
num_epoch = end_epoch,
eval_data = val_dataiter,
eval_metric = metric,
kvstore = 'device',
optimizer = opt,
#optimizer_params = optimizer_params,
initializer = initializer,
arg_params = arg_params,
aux_params = aux_params,
allow_missing = True,
batch_end_callback = _batch_callback,
epoch_end_callback = _epoch_callback )
def main():
#time.sleep(3600*6.5)
global args
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()