Skip to content

Commit 43cf8e9

Browse files
committed
Update code for MEAP v8
1 parent 0bd7502 commit 43cf8e9

22 files changed

+7355
-1251
lines changed

data/p1ch3/ourpoints.hdf5

0 Bytes
Binary file not shown.

data/p1ch3/ourpoints.t

0 Bytes
Binary file not shown.

p1ch3/1_tensors.ipynb

Lines changed: 30 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1262,20 +1262,46 @@
12621262
"cell_type": "code",
12631263
"execution_count": 71,
12641264
"metadata": {},
1265-
"outputs": [],
1265+
"outputs": [
1266+
{
1267+
"data": {
1268+
"text/plain": [
1269+
"(torch.Size([3, 2]), torch.Size([2, 3]))"
1270+
]
1271+
},
1272+
"execution_count": 71,
1273+
"metadata": {},
1274+
"output_type": "execute_result"
1275+
}
1276+
],
12661277
"source": [
12671278
"a = torch.ones(3, 2)\n",
1268-
"a_t = torch.transpose(a, 0, 1)"
1279+
"a_t = torch.transpose(a, 0, 1)\n",
1280+
"\n",
1281+
"a.shape, a_t.shape"
12691282
]
12701283
},
12711284
{
12721285
"cell_type": "code",
12731286
"execution_count": 72,
12741287
"metadata": {},
1275-
"outputs": [],
1288+
"outputs": [
1289+
{
1290+
"data": {
1291+
"text/plain": [
1292+
"(torch.Size([3, 2]), torch.Size([2, 3]))"
1293+
]
1294+
},
1295+
"execution_count": 72,
1296+
"metadata": {},
1297+
"output_type": "execute_result"
1298+
}
1299+
],
12761300
"source": [
12771301
"a = torch.ones(3, 2)\n",
1278-
"a_t = a.transpose(0, 1)"
1302+
"a_t = a.transpose(0, 1)\n",
1303+
"\n",
1304+
"a.shape, a_t.shape"
12791305
]
12801306
},
12811307
{

p1ch5/3_optimizers.ipynb

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -293,14 +293,14 @@
293293
"metadata": {},
294294
"outputs": [],
295295
"source": [
296-
"t_u_train = t_u[train_indices]\n",
297-
"t_c_train = t_c[train_indices]\n",
296+
"train_t_u = t_u[train_indices]\n",
297+
"train_t_c = t_c[train_indices]\n",
298298
"\n",
299-
"t_u_val = t_u[val_indices]\n",
300-
"t_c_val = t_c[val_indices]\n",
299+
"val_t_u = t_u[val_indices]\n",
300+
"val_t_c = t_c[val_indices]\n",
301301
"\n",
302-
"t_un_train = 0.1 * t_u_train\n",
303-
"t_un_val = 0.1 * t_u_val"
302+
"train_t_un = 0.1 * train_t_u\n",
303+
"val_t_un = 0.1 * val_t_u"
304304
]
305305
},
306306
{
@@ -309,21 +309,21 @@
309309
"metadata": {},
310310
"outputs": [],
311311
"source": [
312-
"def training_loop(n_epochs, optimizer, params, t_u_train, t_u_val, t_c_train, t_c_val):\n",
312+
"def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, val_t_c):\n",
313313
" for epoch in range(1, n_epochs + 1):\n",
314-
" t_p_train = model(t_un_train, *params) # <1>\n",
315-
" loss_train = loss_fn(t_p_train, t_c_train)\n",
316-
"\n",
317-
" t_p_val = model(t_un_val, *params) # <1>\n",
318-
" loss_val = loss_fn(t_p_val, t_c_val)\n",
314+
" train_t_p = model(train_t_u, *params) # <1>\n",
315+
" train_loss = loss_fn(train_t_p, train_t_c)\n",
316+
" \n",
317+
" val_t_p = model(val_t_u, *params) # <1>\n",
318+
" val_loss = loss_fn(val_t_p, val_t_c)\n",
319319
" \n",
320320
" optimizer.zero_grad()\n",
321-
" loss_train.backward() # <2>\n",
321+
" train_loss.backward() # <2>\n",
322322
" optimizer.step()\n",
323323
"\n",
324324
" if epoch <= 3 or epoch % 500 == 0:\n",
325325
" print('Epoch {}, Training loss {}, Validation loss {}'.format(\n",
326-
" epoch, float(loss_train), float(loss_val)))\n",
326+
" epoch, float(train_loss), float(val_loss)))\n",
327327
" \n",
328328
" return params"
329329
]
@@ -368,10 +368,10 @@
368368
" n_epochs = 3000, \n",
369369
" optimizer = optimizer,\n",
370370
" params = params,\n",
371-
" t_u_train = t_un_train, # <1> \n",
372-
" t_u_val = t_un_val, # <1> \n",
373-
" t_c_train = t_c_train,\n",
374-
" t_c_val = t_c_val)"
371+
" train_t_u = train_t_un, # <1> \n",
372+
" val_t_u = val_t_un, # <1> \n",
373+
" train_t_c = train_t_c,\n",
374+
" val_t_c = val_t_c)"
375375
]
376376
},
377377
{
@@ -380,18 +380,18 @@
380380
"metadata": {},
381381
"outputs": [],
382382
"source": [
383-
"def training_loop(n_epochs, optimizer, params, t_u_train, t_u_val, t_c_train, t_c_val):\n",
383+
"def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, val_t_c):\n",
384384
" for epoch in range(1, n_epochs + 1):\n",
385-
" t_p_train = model(t_un_train, *params)\n",
386-
" loss_train = loss_fn(t_p_train, t_c_train)\n",
385+
" train_t_p = model(train_t_u, *params)\n",
386+
" train_loss = loss_fn(train_t_p, train_t_c)\n",
387387
"\n",
388388
" with torch.no_grad(): # <1>\n",
389-
" t_p_val = model(t_un_val, *params)\n",
390-
" loss_val = loss_fn(t_p_val, t_c_val)\n",
391-
" assert loss_val.requires_grad == False # <2>\n",
389+
" val_t_p = model(val_t_u, *params)\n",
390+
" val_loss = loss_fn(val_t_p, val_t_c)\n",
391+
" assert val_loss.requires_grad == False # <2>\n",
392392
" \n",
393393
" optimizer.zero_grad()\n",
394-
" loss_train.backward()\n",
394+
" train_loss.backward()\n",
395395
" optimizer.step()"
396396
]
397397
},

0 commit comments

Comments
 (0)