|
293 | 293 | "metadata": {},
|
294 | 294 | "outputs": [],
|
295 | 295 | "source": [
|
296 |
| - "t_u_train = t_u[train_indices]\n", |
297 |
| - "t_c_train = t_c[train_indices]\n", |
| 296 | + "train_t_u = t_u[train_indices]\n", |
| 297 | + "train_t_c = t_c[train_indices]\n", |
298 | 298 | "\n",
|
299 |
| - "t_u_val = t_u[val_indices]\n", |
300 |
| - "t_c_val = t_c[val_indices]\n", |
| 299 | + "val_t_u = t_u[val_indices]\n", |
| 300 | + "val_t_c = t_c[val_indices]\n", |
301 | 301 | "\n",
|
302 |
| - "t_un_train = 0.1 * t_u_train\n", |
303 |
| - "t_un_val = 0.1 * t_u_val" |
| 302 | + "train_t_un = 0.1 * train_t_u\n", |
| 303 | + "val_t_un = 0.1 * val_t_u" |
304 | 304 | ]
|
305 | 305 | },
|
306 | 306 | {
|
|
309 | 309 | "metadata": {},
|
310 | 310 | "outputs": [],
|
311 | 311 | "source": [
|
312 |
| - "def training_loop(n_epochs, optimizer, params, t_u_train, t_u_val, t_c_train, t_c_val):\n", |
| 312 | + "def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, val_t_c):\n", |
313 | 313 | " for epoch in range(1, n_epochs + 1):\n",
|
314 |
| - " t_p_train = model(t_un_train, *params) # <1>\n", |
315 |
| - " loss_train = loss_fn(t_p_train, t_c_train)\n", |
316 |
| - "\n", |
317 |
| - " t_p_val = model(t_un_val, *params) # <1>\n", |
318 |
| - " loss_val = loss_fn(t_p_val, t_c_val)\n", |
| 314 | + " train_t_p = model(train_t_u, *params) # <1>\n", |
| 315 | + " train_loss = loss_fn(train_t_p, train_t_c)\n", |
| 316 | + " \n", |
| 317 | + " val_t_p = model(val_t_u, *params) # <1>\n", |
| 318 | + " val_loss = loss_fn(val_t_p, val_t_c)\n", |
319 | 319 | " \n",
|
320 | 320 | " optimizer.zero_grad()\n",
|
321 |
| - " loss_train.backward() # <2>\n", |
| 321 | + " train_loss.backward() # <2>\n", |
322 | 322 | " optimizer.step()\n",
|
323 | 323 | "\n",
|
324 | 324 | " if epoch <= 3 or epoch % 500 == 0:\n",
|
325 | 325 | " print('Epoch {}, Training loss {}, Validation loss {}'.format(\n",
|
326 |
| - " epoch, float(loss_train), float(loss_val)))\n", |
| 326 | + " epoch, float(train_loss), float(val_loss)))\n", |
327 | 327 | " \n",
|
328 | 328 | " return params"
|
329 | 329 | ]
|
|
368 | 368 | " n_epochs = 3000, \n",
|
369 | 369 | " optimizer = optimizer,\n",
|
370 | 370 | " params = params,\n",
|
371 |
| - " t_u_train = t_un_train, # <1> \n", |
372 |
| - " t_u_val = t_un_val, # <1> \n", |
373 |
| - " t_c_train = t_c_train,\n", |
374 |
| - " t_c_val = t_c_val)" |
| 371 | + " train_t_u = train_t_un, # <1> \n", |
| 372 | + " val_t_u = val_t_un, # <1> \n", |
| 373 | + " train_t_c = train_t_c,\n", |
| 374 | + " val_t_c = val_t_c)" |
375 | 375 | ]
|
376 | 376 | },
|
377 | 377 | {
|
|
380 | 380 | "metadata": {},
|
381 | 381 | "outputs": [],
|
382 | 382 | "source": [
|
383 |
| - "def training_loop(n_epochs, optimizer, params, t_u_train, t_u_val, t_c_train, t_c_val):\n", |
| 383 | + "def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, val_t_c):\n", |
384 | 384 | " for epoch in range(1, n_epochs + 1):\n",
|
385 |
| - " t_p_train = model(t_un_train, *params)\n", |
386 |
| - " loss_train = loss_fn(t_p_train, t_c_train)\n", |
| 385 | + " train_t_p = model(train_t_u, *params)\n", |
| 386 | + " train_loss = loss_fn(train_t_p, train_t_c)\n", |
387 | 387 | "\n",
|
388 | 388 | " with torch.no_grad(): # <1>\n",
|
389 |
| - " t_p_val = model(t_un_val, *params)\n", |
390 |
| - " loss_val = loss_fn(t_p_val, t_c_val)\n", |
391 |
| - " assert loss_val.requires_grad == False # <2>\n", |
| 389 | + " val_t_p = model(val_t_u, *params)\n", |
| 390 | + " val_loss = loss_fn(val_t_p, val_t_c)\n", |
| 391 | + " assert val_loss.requires_grad == False # <2>\n", |
392 | 392 | " \n",
|
393 | 393 | " optimizer.zero_grad()\n",
|
394 |
| - " loss_train.backward()\n", |
| 394 | + " train_loss.backward()\n", |
395 | 395 | " optimizer.step()"
|
396 | 396 | ]
|
397 | 397 | },
|
|
0 commit comments