forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_config.py
216 lines (183 loc) · 5.3 KB
/
sample_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import os
from easydict import EasyDict as edict
config = edict()
config.bn_mom = 0.9
config.workspace = 256
config.emb_size = 512
config.ckpt_embedding = True
config.net_se = 0
config.net_act = 'prelu'
config.net_unit = 3
config.net_input = 1
config.net_blocks = [1,4,6,2]
config.net_output = 'E'
config.net_multiplier = 1.0
config.val_targets = ['lfw', 'cfp_fp', 'agedb_30']
config.ce_loss = True
config.fc7_lr_mult = 1.0
config.fc7_wd_mult = 1.0
config.fc7_no_bias = False
config.max_steps = 0
config.data_rand_mirror = True
config.data_cutoff = False
config.data_color = 0
config.data_images_filter = 0
config.count_flops = True
config.memonger = False #not work now
# network settings
network = edict()
network.r100 = edict()
network.r100.net_name = 'fresnet'
network.r100.num_layers = 100
network.r100fc = edict()
network.r100fc.net_name = 'fresnet'
network.r100fc.num_layers = 100
network.r100fc.net_output = 'FC'
network.r50 = edict()
network.r50.net_name = 'fresnet'
network.r50.num_layers = 50
network.r50v1 = edict()
network.r50v1.net_name = 'fresnet'
network.r50v1.num_layers = 50
network.r50v1.net_unit = 1
network.d169 = edict()
network.d169.net_name = 'fdensenet'
network.d169.num_layers = 169
network.d169.per_batch_size = 64
network.d169.densenet_dropout = 0.0
network.d201 = edict()
network.d201.net_name = 'fdensenet'
network.d201.num_layers = 201
network.d201.per_batch_size = 64
network.d201.densenet_dropout = 0.0
network.y1 = edict()
network.y1.net_name = 'fmobilefacenet'
network.y1.emb_size = 128
network.y1.net_output = 'GDC'
network.y2 = edict()
network.y2.net_name = 'fmobilefacenet'
network.y2.emb_size = 256
network.y2.net_output = 'GDC'
network.y2.net_blocks = [2,8,16,4]
network.m1 = edict()
network.m1.net_name = 'fmobilenet'
network.m1.emb_size = 256
network.m1.net_output = 'GDC'
network.m1.net_multiplier = 1.0
network.m05 = edict()
network.m05.net_name = 'fmobilenet'
network.m05.emb_size = 256
network.m05.net_output = 'GDC'
network.m05.net_multiplier = 0.5
network.mnas = edict()
network.mnas.net_name = 'fmnasnet'
network.mnas.emb_size = 256
network.mnas.net_output = 'GDC'
network.mnas.net_multiplier = 1.0
network.mnas05 = edict()
network.mnas05.net_name = 'fmnasnet'
network.mnas05.emb_size = 256
network.mnas05.net_output = 'GDC'
network.mnas05.net_multiplier = 0.5
network.mnas025 = edict()
network.mnas025.net_name = 'fmnasnet'
network.mnas025.emb_size = 256
network.mnas025.net_output = 'GDC'
network.mnas025.net_multiplier = 0.25
# dataset settings
dataset = edict()
dataset.emore = edict()
dataset.emore.dataset = 'emore'
dataset.emore.dataset_path = '../datasets/faces_emore'
dataset.emore.num_classes = 85742
dataset.emore.image_shape = (112,112,3)
dataset.emore.val_targets = ['lfw', 'cfp_fp', 'agedb_30']
dataset.retina = edict()
dataset.retina.dataset = 'retina'
dataset.retina.dataset_path = '../datasets/ms1m-retinaface-t1'
dataset.retina.num_classes = 93431
dataset.retina.image_shape = (112,112,3)
dataset.retina.val_targets = ['lfw', 'cfp_fp', 'agedb_30']
loss = edict()
loss.softmax = edict()
loss.softmax.loss_name = 'softmax'
loss.nsoftmax = edict()
loss.nsoftmax.loss_name = 'margin_softmax'
loss.nsoftmax.loss_s = 64.0
loss.nsoftmax.loss_m1 = 1.0
loss.nsoftmax.loss_m2 = 0.0
loss.nsoftmax.loss_m3 = 0.0
loss.arcface = edict()
loss.arcface.loss_name = 'margin_softmax'
loss.arcface.loss_s = 64.0
loss.arcface.loss_m1 = 1.0
loss.arcface.loss_m2 = 0.5
loss.arcface.loss_m3 = 0.0
loss.cosface = edict()
loss.cosface.loss_name = 'margin_softmax'
loss.cosface.loss_s = 64.0
loss.cosface.loss_m1 = 1.0
loss.cosface.loss_m2 = 0.0
loss.cosface.loss_m3 = 0.35
loss.combined = edict()
loss.combined.loss_name = 'margin_softmax'
loss.combined.loss_s = 64.0
loss.combined.loss_m1 = 1.0
loss.combined.loss_m2 = 0.3
loss.combined.loss_m3 = 0.2
loss.triplet = edict()
loss.triplet.loss_name = 'triplet'
loss.triplet.images_per_identity = 5
loss.triplet.triplet_alpha = 0.3
loss.triplet.triplet_bag_size = 7200
loss.triplet.triplet_max_ap = 0.0
loss.triplet.per_batch_size = 60
loss.triplet.lr = 0.05
loss.atriplet = edict()
loss.atriplet.loss_name = 'atriplet'
loss.atriplet.images_per_identity = 5
loss.atriplet.triplet_alpha = 0.35
loss.atriplet.triplet_bag_size = 7200
loss.atriplet.triplet_max_ap = 0.0
loss.atriplet.per_batch_size = 60
loss.atriplet.lr = 0.05
# default settings
default = edict()
# default network
default.network = 'r100'
default.pretrained = ''
default.pretrained_epoch = 1
# default dataset
default.dataset = 'emore'
default.loss = 'arcface'
default.frequent = 20
default.verbose = 2000
default.kvstore = 'device'
default.end_epoch = 10000
default.lr = 0.1
default.wd = 0.0005
default.mom = 0.9
default.per_batch_size = 128
default.ckpt = 3
default.lr_steps = '100000,160000,220000'
default.models_root = './models'
def generate_config(_network, _dataset, _loss):
for k, v in loss[_loss].items():
config[k] = v
if k in default:
default[k] = v
for k, v in network[_network].items():
config[k] = v
if k in default:
default[k] = v
for k, v in dataset[_dataset].items():
config[k] = v
if k in default:
default[k] = v
config.loss = _loss
config.network = _network
config.dataset = _dataset
config.num_workers = 1
if 'DMLC_NUM_WORKER' in os.environ:
config.num_workers = int(os.environ['DMLC_NUM_WORKER'])