"
]
},
+ "execution_count": 9,
"metadata": {},
- "execution_count": 24
+ "output_type": "execute_result"
}
],
- "metadata": {}
+ "source": [
+ "model.fit(\n",
+ " x=x_train,\n",
+ " y=y_train,\n",
+ " validation_data=(x_test, y_test),\n",
+ " batch_size=batch_size,\n",
+ " shuffle=True,\n",
+ " epochs=epochs,\n",
+ " verbose=1,\n",
+ ")"
+ ]
},
{
"cell_type": "markdown",
+ "metadata": {},
"source": [
- "As we can see the model reach a very decent accuracy on this task."
- ],
- "metadata": {}
+ "As we can see, the model reaches a very decent accuracy on this task.\n"
+ ]
}
],
"metadata": {
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3.7.11 64-bit ('tf24': venv)"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.11"
- },
"interpreter": {
"hash": "e585d72a124540032141457729caea4129d351be49f1f69f41c00c4f8476abb5"
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
}
},
"nbformat": 4,
diff --git a/docs/notebooks/demo4.ipynb b/docs/notebooks/demo4.ipynb
index 141d16fa..395016e6 100644
--- a/docs/notebooks/demo4.ipynb
+++ b/docs/notebooks/demo4.ipynb
@@ -2,85 +2,99 @@
"cells": [
{
"cell_type": "markdown",
+ "metadata": {
+ "id": "tZ45ItBZ0D59"
+ },
"source": [
"## Demo 4: HKR multiclass and fooling\n",
+ "\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deel-ai/deel-lip/blob/master/docs/notebooks/demo4.ipynb)\n",
"\n",
- "This notebook will show how to train a lispchitz network in a multiclass setup.\n",
- "The HKR is extended to multiclass using a one-vs all setup. It will go through\n",
- "the process of designing and training the network. It will also show how to create robustness certificates from the output of the network. Finally these\n",
- "certificates will be checked by attacking the network. \n",
+ "This notebook will show how to train a lispchitz network in a multiclass setup. The HKR\n",
+ "is extended to multiclass using a one-vs all setup. It will go through the process of\n",
+ "designing and training the network. It will also show how to create robustness\n",
+ "certificates from the output of the network. Finally these certificates will be checked\n",
+ "by attacking the network.\n",
"\n",
- "### installation\n",
+ "### Installation\n",
"\n",
- "First, we install the required libraries. `Foolbox` will allow to perform adversarial attacks on the trained network."
- ],
- "metadata": {
- "id": "tZ45ItBZ0D59"
- }
+ "First, we install the required libraries. `Foolbox` will allow to perform adversarial\n",
+ "attacks on the trained network.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 1,
- "source": [
- "# pip install deel-lip foolbox -qqq"
- ],
- "outputs": [],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "D6a9QvnXHLt5",
"outputId": "bdceb0b5-8946-438b-c8be-1283e621fe9f"
- }
+ },
+ "outputs": [],
+ "source": [
+ "# pip install deel-lip foolbox -qqq"
+ ]
},
{
"cell_type": "code",
"execution_count": 2,
+ "metadata": {
+ "id": "n6uzQe2uGr7M"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2024-09-06 15:26:29.848446: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
+ "2024-09-06 15:26:29.859784: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
+ "2024-09-06 15:26:29.863241: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
+ "2024-09-06 15:26:29.871798: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
+ "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
+ "2024-09-06 15:26:31.151634: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
+ ]
+ }
+ ],
"source": [
"from deel.lip.layers import (\n",
" SpectralDense,\n",
" SpectralConv2D,\n",
" ScaledL2NormPooling2D,\n",
- " ScaledAveragePooling2D,\n",
" FrobeniusDense,\n",
")\n",
"from deel.lip.model import Sequential\n",
- "from deel.lip.activations import GroupSort, FullSort\n",
+ "from deel.lip.activations import GroupSort\n",
"from deel.lip.losses import MulticlassHKR, MulticlassKR\n",
- "from deel.lip.callbacks import CondenseCallback\n",
- "from tensorflow.keras.layers import Input, Flatten\n",
- "from tensorflow.keras.optimizers import Adam\n",
- "from tensorflow.keras.datasets import mnist, fashion_mnist, cifar10\n",
- "from tensorflow.keras.utils import to_categorical\n",
- "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
+ "from keras.layers import Input, Flatten\n",
+ "from keras.optimizers import Adam\n",
+ "from keras.datasets import fashion_mnist\n",
+ "from keras.utils import to_categorical\n",
"import numpy as np"
- ],
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "2021-09-09 14:03:36.448213: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n"
- ]
- }
- ],
- "metadata": {
- "id": "n6uzQe2uGr7M"
- }
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "For this example, the dataset `fashion_mnist` will be used. In order to keep things simple, no data augmentation will be performed."
- ],
"metadata": {
"id": "DLTQeRpkMCwO"
- }
+ },
+ "source": [
+ "For this example, the dataset `fashion_mnist` will be used. In order to keep things\n",
+ "simple, no data augmentation will be performed.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "o6EjFWd0G_dB",
+ "outputId": "0461fa31-a754-456d-fe77-beb750cc3481"
+ },
+ "outputs": [],
"source": [
"# load data\n",
"(x_train, y_train_ord), (x_test, y_test_ord) = fashion_mnist.load_data()\n",
@@ -90,41 +104,178 @@
"# one hot encode the labels\n",
"y_train = to_categorical(y_train_ord)\n",
"y_test = to_categorical(y_test_ord)"
- ],
- "outputs": [],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "o6EjFWd0G_dB",
- "outputId": "0461fa31-a754-456d-fe77-beb750cc3481"
- }
+ ]
},
{
"cell_type": "markdown",
+ "metadata": {
+ "id": "JY04qBnpMYsV"
+ },
"source": [
- "Let's build the network. \n",
+ "Let's build the network.\n",
"\n",
- "### the architecture\n",
+ "### The architecture\n",
"\n",
- "The original one vs all setup would require 10 different networks ( 1 per class ), however, in practice we use a network with\n",
- "a common body and 10 1-lipschitz heads. Experiments have shown that this setup don't affect the network performance. In order to ease the creation of such network, `FrobeniusDense` layer has a parameter for this: whenr `disjoint_neurons=True` it act as the stacking of 10 single neurons head. Note that, altough each head is a 1-lipschitz function the overall network is not 1-lipschitz (Concatenation is not 1-lipschitz). We will see later how this affects the certficate creation.\n",
+ "The original one vs all setup would require 10 different networks ( 1 per class ),\n",
+ "however, in practice we use a network with a common body and 10 1-lipschitz heads.\n",
+ "Experiments have shown that this setup don't affect the network performance. In order to\n",
+ "ease the creation of such network, `FrobeniusDense` layer has a parameter for this:\n",
+ "whenr `disjoint_neurons=True` it act as the stacking of 10 single neurons head. Note\n",
+ "that, altough each head is a 1-lipschitz function the overall network is not 1-lipschitz\n",
+ "(Concatenation is not 1-lipschitz). We will see later how this affects the certficate\n",
+ "creation.\n",
"\n",
- "### the loss\n",
+ "### The loss\n",
"\n",
- "The multiclass loss can be found in `HKR_multiclass_loss`. The loss has two params: `alpha` and `min_margin`. Decreasing `alpha` and increasing `min_margin` improve robustness (at the cost of accuracy). note also in the case of lipschitz networks, more robustness require more parameters. For more information see [our paper](https://arxiv.org/abs/2006.06520).\n",
+ "The multiclass loss can be found in `HKR_multiclass_loss`. The loss has two params:\n",
+ "`alpha` and `min_margin`. Decreasing `alpha` and increasing `min_margin` improve\n",
+ "robustness (at the cost of accuracy). note also in the case of lipschitz networks, more\n",
+ "robustness require more parameters. For more information see\n",
+ "[our paper](https://arxiv.org/abs/2006.06520).\n",
"\n",
- "In this setup choosing `alpha=100`, `min_margin=.25` provide a good robustness without hurting the accuracy too much.\n",
+ "In this setup choosing `alpha=100`, `min_margin=.25` provide a good robustness without\n",
+ "hurting the accuracy too much.\n",
"\n",
- "Finally the `KR_multiclass_loss()` indicate the robustness of the network ( proxy of the average certificate )\n"
- ],
- "metadata": {
- "id": "JY04qBnpMYsV"
- }
+ "Finally the `KR_multiclass_loss()` indicate the robustness of the network ( proxy of the\n",
+ "average certificate )\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "SwA5kgOBG7Ni",
+ "outputId": "e869beba-c511-4722-ad5f-fe3d8228f3a6"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
+ "I0000 00:00:1725629193.239470 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.259969 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.260106 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.260871 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.260969 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.261055 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.348510 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.348632 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "I0000 00:00:1725629193.348722 871063 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
+ "2024-09-06 15:26:33.348791: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 6818 MB memory: -> device: 0, name: NVIDIA GeForce RTX 2070 SUPER, pci bus id: 0000:01:00.0, compute capability: 7.5\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "Model: \"sequential\" \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mModel: \"sequential\"\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโ\n",
+ "โ Layer (type) โ Output Shape โ Param # โ\n",
+ "โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ\n",
+ "โ spectral_conv2d โ (None , 28 , 28 , 16 ) โ 321 โ\n",
+ "โ (SpectralConv2D ) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ scaled_l2_norm_pooling2d โ (None , 14 , 14 , 16 ) โ 0 โ\n",
+ "โ (ScaledL2NormPooling2D ) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ spectral_conv2d_1 โ (None , 14 , 14 , 32 ) โ 9,281 โ\n",
+ "โ (SpectralConv2D ) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ scaled_l2_norm_pooling2d_1 โ (None , 7 , 7 , 32 ) โ 0 โ\n",
+ "โ (ScaledL2NormPooling2D ) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ flatten (Flatten ) โ (None , 1568 ) โ 0 โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ spectral_dense (SpectralDense ) โ (None , 64 ) โ 200,833 โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ frobenius_dense โ (None , 10 ) โ 1,280 โ\n",
+ "โ (FrobeniusDense ) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโ\n",
+ " \n"
+ ],
+ "text/plain": [
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโ\n",
+ "โ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ\n",
+ "โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ\n",
+ "โ spectral_conv2d โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m16\u001b[0m) โ \u001b[38;5;34m321\u001b[0m โ\n",
+ "โ (\u001b[38;5;33mSpectralConv2D\u001b[0m) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ scaled_l2_norm_pooling2d โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m16\u001b[0m) โ \u001b[38;5;34m0\u001b[0m โ\n",
+ "โ (\u001b[38;5;33mScaledL2NormPooling2D\u001b[0m) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ spectral_conv2d_1 โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ \u001b[38;5;34m9,281\u001b[0m โ\n",
+ "โ (\u001b[38;5;33mSpectralConv2D\u001b[0m) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ scaled_l2_norm_pooling2d_1 โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ \u001b[38;5;34m0\u001b[0m โ\n",
+ "โ (\u001b[38;5;33mScaledL2NormPooling2D\u001b[0m) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ flatten (\u001b[38;5;33mFlatten\u001b[0m) โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1568\u001b[0m) โ \u001b[38;5;34m0\u001b[0m โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ spectral_dense (\u001b[38;5;33mSpectralDense\u001b[0m) โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ \u001b[38;5;34m200,833\u001b[0m โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโค\n",
+ "โ frobenius_dense โ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) โ \u001b[38;5;34m1,280\u001b[0m โ\n",
+ "โ (\u001b[38;5;33mFrobeniusDense\u001b[0m) โ โ โ\n",
+ "โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโ\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Total params: 211,715 (827.01 KB)\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m211,715\u001b[0m (827.01 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Trainable params: 105,856 (413.50 KB)\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m105,856\u001b[0m (413.50 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Non-trainable params: 105,859 (413.51 KB)\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m105,859\u001b[0m (413.51 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"# Sequential (resp Model) from deel.model has the same properties as any lipschitz model.\n",
"# It act only as a container, with features specific to lipschitz\n",
@@ -143,7 +294,7 @@
" kernel_initializer=\"orthogonal\",\n",
" ),\n",
" # usual pooling layer are implemented (avg, max...), but new layers are also available\n",
- " ScaledL2NormPooling2D(pool_size=(2, 2), data_format=\"channels_last\"),\n",
+ " ScaledL2NormPooling2D(pool_size=(2, 2), data_format=\"channels_last\"),\n",
" SpectralConv2D(\n",
" filters=32,\n",
" kernel_size=(3, 3),\n",
@@ -151,7 +302,7 @@
" use_bias=True,\n",
" kernel_initializer=\"orthogonal\",\n",
" ),\n",
- " ScaledL2NormPooling2D(pool_size=(2, 2), data_format=\"channels_last\"),\n",
+ " ScaledL2NormPooling2D(pool_size=(2, 2), data_format=\"channels_last\"),\n",
" # our layers are fully interoperable with existing keras layers\n",
" Flatten(),\n",
" SpectralDense(\n",
@@ -161,7 +312,10 @@
" kernel_initializer=\"orthogonal\",\n",
" ),\n",
" FrobeniusDense(\n",
- " y_train.shape[-1], activation=None, use_bias=False, kernel_initializer=\"orthogonal\"\n",
+ " y_train.shape[-1],\n",
+ " activation=None,\n",
+ " use_bias=False,\n",
+ " kernel_initializer=\"orthogonal\",\n",
" ),\n",
" ],\n",
" # similary model has a parameter to set the lipschitz constant\n",
@@ -174,774 +328,802 @@
"model.compile(\n",
" # decreasing alpha and increasing min_margin improve robustness (at the cost of accuracy)\n",
" # note also in the case of lipschitz networks, more robustness require more parameters.\n",
- " loss=MulticlassHKR(alpha=100, min_margin=.25),\n",
+ " loss=MulticlassHKR(alpha=100, min_margin=0.25),\n",
" optimizer=Adam(1e-4),\n",
" metrics=[\"accuracy\", MulticlassKR()],\n",
")\n",
"\n",
"model.summary()"
- ],
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "2021-09-09 14:03:38.719310: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set\n",
- "2021-09-09 14:03:38.719800: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1\n",
- "2021-09-09 14:03:38.750242: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.750491: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: \n",
- "pciBusID: 0000:01:00.0 name: GeForce RTX 2070 SUPER computeCapability: 7.5\n",
- "coreClock: 1.785GHz coreCount: 40 deviceMemorySize: 7.79GiB deviceMemoryBandwidth: 417.29GiB/s\n",
- "2021-09-09 14:03:38.750504: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
- "2021-09-09 14:03:38.751559: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11\n",
- "2021-09-09 14:03:38.751584: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11\n",
- "2021-09-09 14:03:38.752047: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10\n",
- "2021-09-09 14:03:38.752161: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10\n",
- "2021-09-09 14:03:38.753239: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10\n",
- "2021-09-09 14:03:38.753476: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11\n",
- "2021-09-09 14:03:38.753540: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8\n",
- "2021-09-09 14:03:38.753583: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.753826: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.754040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0\n",
- "2021-09-09 14:03:38.754479: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set\n",
- "2021-09-09 14:03:38.754559: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.754781: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: \n",
- "pciBusID: 0000:01:00.0 name: GeForce RTX 2070 SUPER computeCapability: 7.5\n",
- "coreClock: 1.785GHz coreCount: 40 deviceMemorySize: 7.79GiB deviceMemoryBandwidth: 417.29GiB/s\n",
- "2021-09-09 14:03:38.754792: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
- "2021-09-09 14:03:38.754799: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11\n",
- "2021-09-09 14:03:38.754806: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11\n",
- "2021-09-09 14:03:38.754812: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10\n",
- "2021-09-09 14:03:38.754818: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10\n",
- "2021-09-09 14:03:38.754824: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10\n",
- "2021-09-09 14:03:38.754831: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11\n",
- "2021-09-09 14:03:38.754837: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8\n",
- "2021-09-09 14:03:38.754865: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.755095: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:38.755303: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0\n",
- "2021-09-09 14:03:38.755319: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
- "2021-09-09 14:03:39.211037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:\n",
- "2021-09-09 14:03:39.211059: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0 \n",
- "2021-09-09 14:03:39.211064: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N \n",
- "2021-09-09 14:03:39.211182: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:39.211426: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:39.211643: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
- "2021-09-09 14:03:39.211849: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7250 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070 SUPER, pci bus id: 0000:01:00.0, compute capability: 7.5)\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Model: \"hkr_model\"\n",
- "_________________________________________________________________\n",
- "Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- "spectral_conv2d (SpectralCon (None, 28, 28, 16) 321 \n",
- "_________________________________________________________________\n",
- "scaled_l2norm_pooling2d (Sca (None, 14, 14, 16) 0 \n",
- "_________________________________________________________________\n",
- "spectral_conv2d_1 (SpectralC (None, 14, 14, 32) 9281 \n",
- "_________________________________________________________________\n",
- "scaled_l2norm_pooling2d_1 (S (None, 7, 7, 32) 0 \n",
- "_________________________________________________________________\n",
- "flatten (Flatten) (None, 1568) 0 \n",
- "_________________________________________________________________\n",
- "spectral_dense (SpectralDens (None, 64) 200833 \n",
- "_________________________________________________________________\n",
- "frobenius_dense (FrobeniusDe (None, 10) 1280 \n",
- "=================================================================\n",
- "Total params: 211,715\n",
- "Trainable params: 105,856\n",
- "Non-trainable params: 105,859\n",
- "_________________________________________________________________\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/home/thibaut.boissin/projects/repo_github/deel-lip/deel/lip/model.py:56: UserWarning: Sequential model contains a layer wich is not a Lipschitz layer: flatten\n",
- " layer.name\n"
- ]
- }
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "SwA5kgOBG7Ni",
- "outputId": "e869beba-c511-4722-ad5f-fe3d8228f3a6"
- }
+ ]
},
{
"cell_type": "markdown",
+ "metadata": {
+ "id": "zH0oy4iRP1Ct"
+ },
"source": [
- "### notes about constraint enforcement\n",
+ "### Notes about constraint enforcement\n",
"\n",
"There are currently 3 way to enforce a constraint in a network:\n",
+ "\n",
"1. regularization\n",
"2. weight reparametrization\n",
"3. weight projection\n",
"\n",
- "The first one don't provide the required garanties, this is why `deel-lip` focuses on the later two. Weight reparametrization is done directly in the layers (parameter `niter_bjorck`) this trick allow to perform arbitrary gradient updates without breaking the constraint. However this is done in the graph, increasing ressources consumption. The last method project the weights between each batch, ensuring the constraint at an more affordable computational cost. It can be done in `deel-lip` using the `CondenseCallback`. The main problem with this method is a reduced efficiency of each update.\n",
+ "The first one don't provide the required garanties, this is why `deel-lip` focuses on\n",
+ "the later two. Weight reparametrization is done directly in the layers (parameter\n",
+ "`niter_bjorck`) this trick allow to perform arbitrary gradient updates without breaking\n",
+ "the constraint. However this is done in the graph, increasing ressources consumption.\n",
+ "The last method project the weights between each batch, ensuring the constraint at an\n",
+ "more affordable computational cost. It can be done in `deel-lip` using the\n",
+ "`CondenseCallback`. The main problem with this method is a reduced efficiency of each\n",
+ "update.\n",
"\n",
- "As a rule of thumb, when reparametrization is used alone, setting `niter_bjorck` to at least 15 is advised. However when combined with weight projection, this setting can be lowered greatly."
- ],
- "metadata": {
- "id": "zH0oy4iRP1Ct"
- }
+ "As a rule of thumb, when reparametrization is used alone, setting `niter_bjorck` to at\n",
+ "least 15 is advised. However when combined with weight projection, this setting can be\n",
+ "lowered greatly.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 5,
- "source": [
- "# fit the model\n",
- "model.fit(\n",
- " x_train,\n",
- " y_train,\n",
- " batch_size=4096,\n",
- " epochs=100,\n",
- " validation_data=(x_test, y_test),\n",
- " shuffle=True,\n",
- " verbose=1,\n",
- ")"
- ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "p1rWZTZBHEIR",
+ "outputId": "7cb00f9b-0f84-40f0-c5fa-b29fc0a00c92"
+ },
"outputs": [
{
+ "name": "stdout",
"output_type": "stream",
- "name": "stderr",
"text": [
- "2021-09-09 14:03:40.083840: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)\n",
- "2021-09-09 14:03:40.100871: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 3600000000 Hz\n"
+ "Epoch 1/100\n"
]
},
{
+ "name": "stderr",
"output_type": "stream",
- "name": "stdout",
"text": [
- "Epoch 1/100\n"
+ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
+ "I0000 00:00:1725629195.757170 871150 service.cc:146] XLA service 0x55ee43b7d460 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
+ "I0000 00:00:1725629195.757189 871150 service.cc:154] StreamExecutor device (0): NVIDIA GeForce RTX 2070 SUPER, Compute Capability 7.5\n",
+ "2024-09-06 15:26:35.802016: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
+ "2024-09-06 15:26:35.991972: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:531] Loaded cuDNN version 8902\n"
]
},
{
+ "name": "stdout",
"output_type": "stream",
- "name": "stderr",
"text": [
- "2021-09-09 14:03:42.102055: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11\n",
- "2021-09-09 14:03:42.320388: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11\n",
- "2021-09-09 14:03:42.331382: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8\n"
+ "\u001b[1m 7/15\u001b[0m \u001b[32mโโโโโโโโโ\u001b[0m\u001b[37mโโโโโโโโโโโ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.0541 - accuracy: 0.1560 - loss: 20.3139"
]
},
{
+ "name": "stderr",
"output_type": "stream",
+ "text": [
+ "I0000 00:00:1725629199.904060 871150 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
+ ]
+ },
+ {
"name": "stdout",
+ "output_type": "stream",
"text": [
- "15/15 [==============================] - 5s 117ms/step - loss: 41.2174 - accuracy: 0.1382 - MulticlassKR: 0.0467 - val_loss: 29.5743 - val_accuracy: 0.2798 - val_MulticlassKR: 0.1810\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 328ms/step - MulticlassKR: 0.0763 - accuracy: 0.2224 - loss: 18.1235 - val_MulticlassKR: 0.1733 - val_accuracy: 0.4881 - val_loss: 11.0883\n",
"Epoch 2/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 25.3826 - accuracy: 0.4441 - MulticlassKR: 0.2389 - val_loss: 19.8280 - val_accuracy: 0.5547 - val_MulticlassKR: 0.3549\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.2081 - accuracy: 0.4988 - loss: 9.7469 - val_MulticlassKR: 0.2769 - val_accuracy: 0.5344 - val_loss: 7.6648\n",
"Epoch 3/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 18.3231 - accuracy: 0.5899 - MulticlassKR: 0.4017 - val_loss: 16.0346 - val_accuracy: 0.6183 - val_MulticlassKR: 0.4835\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.2982 - accuracy: 0.5801 - loss: 7.1314 - val_MulticlassKR: 0.3344 - val_accuracy: 0.6024 - val_loss: 6.3906\n",
"Epoch 4/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 15.0896 - accuracy: 0.6402 - MulticlassKR: 0.5135 - val_loss: 13.9297 - val_accuracy: 0.6470 - val_MulticlassKR: 0.5607\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.3466 - accuracy: 0.6334 - loss: 6.0837 - val_MulticlassKR: 0.3680 - val_accuracy: 0.6562 - val_loss: 5.7714\n",
"Epoch 5/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 13.2237 - accuracy: 0.6814 - MulticlassKR: 0.5821 - val_loss: 12.5531 - val_accuracy: 0.6814 - val_MulticlassKR: 0.6186\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.3781 - accuracy: 0.6822 - loss: 5.5372 - val_MulticlassKR: 0.3964 - val_accuracy: 0.6994 - val_loss: 5.3437\n",
"Epoch 6/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 12.0225 - accuracy: 0.7057 - MulticlassKR: 0.6364 - val_loss: 11.6916 - val_accuracy: 0.6964 - val_MulticlassKR: 0.6655\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4043 - accuracy: 0.7169 - loss: 5.1466 - val_MulticlassKR: 0.4180 - val_accuracy: 0.7150 - val_loss: 5.0471\n",
"Epoch 7/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 11.2456 - accuracy: 0.7178 - MulticlassKR: 0.6803 - val_loss: 11.0661 - val_accuracy: 0.7131 - val_MulticlassKR: 0.7020\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4237 - accuracy: 0.7325 - loss: 4.8670 - val_MulticlassKR: 0.4346 - val_accuracy: 0.7278 - val_loss: 4.8037\n",
"Epoch 8/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 10.7023 - accuracy: 0.7343 - MulticlassKR: 0.7144 - val_loss: 10.6094 - val_accuracy: 0.7190 - val_MulticlassKR: 0.7339\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4419 - accuracy: 0.7441 - loss: 4.6246 - val_MulticlassKR: 0.4532 - val_accuracy: 0.7409 - val_loss: 4.6052\n",
"Epoch 9/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 10.2158 - accuracy: 0.7353 - MulticlassKR: 0.7471 - val_loss: 10.2140 - val_accuracy: 0.7255 - val_MulticlassKR: 0.7639\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4604 - accuracy: 0.7503 - loss: 4.3993 - val_MulticlassKR: 0.4686 - val_accuracy: 0.7430 - val_loss: 4.4466\n",
"Epoch 10/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 9.9306 - accuracy: 0.7444 - MulticlassKR: 0.7743 - val_loss: 9.8911 - val_accuracy: 0.7341 - val_MulticlassKR: 0.7875\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4754 - accuracy: 0.7582 - loss: 4.2522 - val_MulticlassKR: 0.4846 - val_accuracy: 0.7539 - val_loss: 4.2892\n",
"Epoch 11/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 9.4766 - accuracy: 0.7500 - MulticlassKR: 0.8008 - val_loss: 9.5676 - val_accuracy: 0.7397 - val_MulticlassKR: 0.8139\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.4916 - accuracy: 0.7638 - loss: 4.1165 - val_MulticlassKR: 0.4996 - val_accuracy: 0.7585 - val_loss: 4.1607\n",
"Epoch 12/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 9.2583 - accuracy: 0.7547 - MulticlassKR: 0.8227 - val_loss: 9.3108 - val_accuracy: 0.7445 - val_MulticlassKR: 0.8375\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5069 - accuracy: 0.7669 - loss: 3.9638 - val_MulticlassKR: 0.5160 - val_accuracy: 0.7611 - val_loss: 4.0370\n",
"Epoch 13/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 9.0268 - accuracy: 0.7571 - MulticlassKR: 0.8463 - val_loss: 9.0594 - val_accuracy: 0.7461 - val_MulticlassKR: 0.8565\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5218 - accuracy: 0.7733 - loss: 3.8421 - val_MulticlassKR: 0.5304 - val_accuracy: 0.7674 - val_loss: 3.9188\n",
"Epoch 14/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 8.7289 - accuracy: 0.7631 - MulticlassKR: 0.8653 - val_loss: 8.8221 - val_accuracy: 0.7563 - val_MulticlassKR: 0.8798\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5361 - accuracy: 0.7779 - loss: 3.7251 - val_MulticlassKR: 0.5449 - val_accuracy: 0.7701 - val_loss: 3.8162\n",
"Epoch 15/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 8.5468 - accuracy: 0.7660 - MulticlassKR: 0.8856 - val_loss: 8.6213 - val_accuracy: 0.7566 - val_MulticlassKR: 0.8976\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5503 - accuracy: 0.7808 - loss: 3.6451 - val_MulticlassKR: 0.5575 - val_accuracy: 0.7742 - val_loss: 3.7264\n",
"Epoch 16/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 8.3208 - accuracy: 0.7699 - MulticlassKR: 0.9078 - val_loss: 8.4393 - val_accuracy: 0.7672 - val_MulticlassKR: 0.9187\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5641 - accuracy: 0.7860 - loss: 3.5308 - val_MulticlassKR: 0.5729 - val_accuracy: 0.7778 - val_loss: 3.6387\n",
"Epoch 17/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 8.1348 - accuracy: 0.7747 - MulticlassKR: 0.9288 - val_loss: 8.2421 - val_accuracy: 0.7644 - val_MulticlassKR: 0.9369\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5776 - accuracy: 0.7858 - loss: 3.4762 - val_MulticlassKR: 0.5863 - val_accuracy: 0.7795 - val_loss: 3.5747\n",
"Epoch 18/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 7.8150 - accuracy: 0.7807 - MulticlassKR: 0.9479 - val_loss: 8.0528 - val_accuracy: 0.7741 - val_MulticlassKR: 0.9598\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.5929 - accuracy: 0.7947 - loss: 3.3608 - val_MulticlassKR: 0.5964 - val_accuracy: 0.7841 - val_loss: 3.5003\n",
"Epoch 19/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 7.7277 - accuracy: 0.7813 - MulticlassKR: 0.9697 - val_loss: 7.8976 - val_accuracy: 0.7749 - val_MulticlassKR: 0.9754\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6043 - accuracy: 0.7972 - loss: 3.2695 - val_MulticlassKR: 0.6103 - val_accuracy: 0.7840 - val_loss: 3.4513\n",
"Epoch 20/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 7.5802 - accuracy: 0.7822 - MulticlassKR: 0.9866 - val_loss: 7.7375 - val_accuracy: 0.7784 - val_MulticlassKR: 0.9936\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6161 - accuracy: 0.7980 - loss: 3.2273 - val_MulticlassKR: 0.6240 - val_accuracy: 0.7872 - val_loss: 3.3683\n",
"Epoch 21/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 7.3151 - accuracy: 0.7893 - MulticlassKR: 1.0068 - val_loss: 7.5871 - val_accuracy: 0.7818 - val_MulticlassKR: 1.0131\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6286 - accuracy: 0.8012 - loss: 3.1890 - val_MulticlassKR: 0.6348 - val_accuracy: 0.7915 - val_loss: 3.3028\n",
"Epoch 22/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 7.2699 - accuracy: 0.7901 - MulticlassKR: 1.0211 - val_loss: 7.4710 - val_accuracy: 0.7807 - val_MulticlassKR: 1.0305\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6422 - accuracy: 0.8026 - loss: 3.1332 - val_MulticlassKR: 0.6465 - val_accuracy: 0.7940 - val_loss: 3.2599\n",
"Epoch 23/100\n",
- "15/15 [==============================] - 1s 83ms/step - loss: 7.1052 - accuracy: 0.7939 - MulticlassKR: 1.0391 - val_loss: 7.3397 - val_accuracy: 0.7854 - val_MulticlassKR: 1.0450\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6536 - accuracy: 0.8073 - loss: 3.0645 - val_MulticlassKR: 0.6620 - val_accuracy: 0.7959 - val_loss: 3.1935\n",
"Epoch 24/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 7.0167 - accuracy: 0.7962 - MulticlassKR: 1.0562 - val_loss: 7.2212 - val_accuracy: 0.7870 - val_MulticlassKR: 1.0637\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6670 - accuracy: 0.8122 - loss: 2.9769 - val_MulticlassKR: 0.6753 - val_accuracy: 0.7995 - val_loss: 3.1647\n",
"Epoch 25/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.8205 - accuracy: 0.8002 - MulticlassKR: 1.0749 - val_loss: 7.1256 - val_accuracy: 0.7895 - val_MulticlassKR: 1.0808\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6822 - accuracy: 0.8100 - loss: 2.9820 - val_MulticlassKR: 0.6854 - val_accuracy: 0.8022 - val_loss: 3.1222\n",
"Epoch 26/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.7542 - accuracy: 0.8013 - MulticlassKR: 1.0923 - val_loss: 7.0068 - val_accuracy: 0.7897 - val_MulticlassKR: 1.0966\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.6940 - accuracy: 0.8144 - loss: 2.9172 - val_MulticlassKR: 0.7015 - val_accuracy: 0.8025 - val_loss: 3.0453\n",
"Epoch 27/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 6.6025 - accuracy: 0.8022 - MulticlassKR: 1.1069 - val_loss: 6.8967 - val_accuracy: 0.7924 - val_MulticlassKR: 1.1105\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7081 - accuracy: 0.8151 - loss: 2.8395 - val_MulticlassKR: 0.7163 - val_accuracy: 0.8017 - val_loss: 3.0229\n",
"Epoch 28/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.5729 - accuracy: 0.8033 - MulticlassKR: 1.1220 - val_loss: 6.8168 - val_accuracy: 0.7951 - val_MulticlassKR: 1.1275\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7224 - accuracy: 0.8149 - loss: 2.8350 - val_MulticlassKR: 0.7286 - val_accuracy: 0.8061 - val_loss: 2.9596\n",
"Epoch 29/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.5147 - accuracy: 0.8074 - MulticlassKR: 1.1347 - val_loss: 6.7141 - val_accuracy: 0.7971 - val_MulticlassKR: 1.1425\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7366 - accuracy: 0.8169 - loss: 2.7816 - val_MulticlassKR: 0.7417 - val_accuracy: 0.8054 - val_loss: 2.9296\n",
"Epoch 30/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.4094 - accuracy: 0.8059 - MulticlassKR: 1.1528 - val_loss: 6.6193 - val_accuracy: 0.7998 - val_MulticlassKR: 1.1605\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7499 - accuracy: 0.8222 - loss: 2.7434 - val_MulticlassKR: 0.7554 - val_accuracy: 0.8099 - val_loss: 2.9055\n",
"Epoch 31/100\n",
- "15/15 [==============================] - 1s 82ms/step - loss: 6.3102 - accuracy: 0.8090 - MulticlassKR: 1.1664 - val_loss: 6.5371 - val_accuracy: 0.8005 - val_MulticlassKR: 1.1746\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7616 - accuracy: 0.8199 - loss: 2.7226 - val_MulticlassKR: 0.7701 - val_accuracy: 0.8129 - val_loss: 2.8723\n",
"Epoch 32/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.1902 - accuracy: 0.8078 - MulticlassKR: 1.1889 - val_loss: 6.4705 - val_accuracy: 0.8004 - val_MulticlassKR: 1.1924\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 0.7776 - accuracy: 0.8200 - loss: 2.7143 - val_MulticlassKR: 0.7863 - val_accuracy: 0.8118 - val_loss: 2.8070\n",
"Epoch 33/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.1780 - accuracy: 0.8127 - MulticlassKR: 1.1991 - val_loss: 6.3850 - val_accuracy: 0.8033 - val_MulticlassKR: 1.2076\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.7904 - accuracy: 0.8222 - loss: 2.6423 - val_MulticlassKR: 0.7993 - val_accuracy: 0.8173 - val_loss: 2.7952\n",
"Epoch 34/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 6.1156 - accuracy: 0.8123 - MulticlassKR: 1.2147 - val_loss: 6.3106 - val_accuracy: 0.8091 - val_MulticlassKR: 1.2191\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8055 - accuracy: 0.8226 - loss: 2.5915 - val_MulticlassKR: 0.8127 - val_accuracy: 0.8150 - val_loss: 2.7401\n",
"Epoch 35/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 6.0083 - accuracy: 0.8143 - MulticlassKR: 1.2322 - val_loss: 6.2621 - val_accuracy: 0.8086 - val_MulticlassKR: 1.2360\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8197 - accuracy: 0.8248 - loss: 2.5484 - val_MulticlassKR: 0.8272 - val_accuracy: 0.8150 - val_loss: 2.7171\n",
"Epoch 36/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.9177 - accuracy: 0.8158 - MulticlassKR: 1.2462 - val_loss: 6.1842 - val_accuracy: 0.8101 - val_MulticlassKR: 1.2483\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8347 - accuracy: 0.8238 - loss: 2.5125 - val_MulticlassKR: 0.8409 - val_accuracy: 0.8182 - val_loss: 2.6731\n",
"Epoch 37/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.7953 - accuracy: 0.8186 - MulticlassKR: 1.2662 - val_loss: 6.1092 - val_accuracy: 0.8119 - val_MulticlassKR: 1.2654\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8476 - accuracy: 0.8262 - loss: 2.4837 - val_MulticlassKR: 0.8514 - val_accuracy: 0.8213 - val_loss: 2.6460\n",
"Epoch 38/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.7620 - accuracy: 0.8179 - MulticlassKR: 1.2781 - val_loss: 6.0499 - val_accuracy: 0.8126 - val_MulticlassKR: 1.2815\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 0.8624 - accuracy: 0.8264 - loss: 2.4758 - val_MulticlassKR: 0.8680 - val_accuracy: 0.8220 - val_loss: 2.6092\n",
"Epoch 39/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.7588 - accuracy: 0.8187 - MulticlassKR: 1.2897 - val_loss: 5.9959 - val_accuracy: 0.8131 - val_MulticlassKR: 1.2936\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8787 - accuracy: 0.8311 - loss: 2.3857 - val_MulticlassKR: 0.8839 - val_accuracy: 0.8224 - val_loss: 2.5782\n",
"Epoch 40/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.7005 - accuracy: 0.8208 - MulticlassKR: 1.3042 - val_loss: 5.9460 - val_accuracy: 0.8152 - val_MulticlassKR: 1.3039\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.8878 - accuracy: 0.8294 - loss: 2.4098 - val_MulticlassKR: 0.8976 - val_accuracy: 0.8186 - val_loss: 2.5610\n",
"Epoch 41/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.6319 - accuracy: 0.8232 - MulticlassKR: 1.3146 - val_loss: 5.8816 - val_accuracy: 0.8148 - val_MulticlassKR: 1.3217\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9059 - accuracy: 0.8301 - loss: 2.3862 - val_MulticlassKR: 0.9114 - val_accuracy: 0.8209 - val_loss: 2.5297\n",
"Epoch 42/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.6429 - accuracy: 0.8232 - MulticlassKR: 1.3291 - val_loss: 5.8772 - val_accuracy: 0.8151 - val_MulticlassKR: 1.3317\n",
- "Epoch 43/100\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "15/15 [==============================] - 1s 80ms/step - loss: 5.5395 - accuracy: 0.8245 - MulticlassKR: 1.3460 - val_loss: 5.8039 - val_accuracy: 0.8189 - val_MulticlassKR: 1.3538\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9195 - accuracy: 0.8314 - loss: 2.3217 - val_MulticlassKR: 0.9314 - val_accuracy: 0.8245 - val_loss: 2.4789\n",
+ "Epoch 43/100\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9348 - accuracy: 0.8341 - loss: 2.2993 - val_MulticlassKR: 0.9414 - val_accuracy: 0.8268 - val_loss: 2.4494\n",
"Epoch 44/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.4303 - accuracy: 0.8249 - MulticlassKR: 1.3593 - val_loss: 5.7421 - val_accuracy: 0.8189 - val_MulticlassKR: 1.3669\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9513 - accuracy: 0.8365 - loss: 2.2156 - val_MulticlassKR: 0.9535 - val_accuracy: 0.8286 - val_loss: 2.4348\n",
"Epoch 45/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.3844 - accuracy: 0.8268 - MulticlassKR: 1.3762 - val_loss: 5.6846 - val_accuracy: 0.8217 - val_MulticlassKR: 1.3765\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9637 - accuracy: 0.8364 - loss: 2.2075 - val_MulticlassKR: 0.9722 - val_accuracy: 0.8277 - val_loss: 2.4032\n",
"Epoch 46/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.3307 - accuracy: 0.8281 - MulticlassKR: 1.3873 - val_loss: 5.6413 - val_accuracy: 0.8234 - val_MulticlassKR: 1.3881\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9808 - accuracy: 0.8363 - loss: 2.2168 - val_MulticlassKR: 0.9827 - val_accuracy: 0.8280 - val_loss: 2.4145\n",
"Epoch 47/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.3788 - accuracy: 0.8258 - MulticlassKR: 1.3938 - val_loss: 5.6087 - val_accuracy: 0.8214 - val_MulticlassKR: 1.3971\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 0.9938 - accuracy: 0.8363 - loss: 2.2026 - val_MulticlassKR: 1.0033 - val_accuracy: 0.8268 - val_loss: 2.3602\n",
"Epoch 48/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.2561 - accuracy: 0.8314 - MulticlassKR: 1.4119 - val_loss: 5.5684 - val_accuracy: 0.8215 - val_MulticlassKR: 1.4106\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 1.0093 - accuracy: 0.8343 - loss: 2.1632 - val_MulticlassKR: 1.0187 - val_accuracy: 0.8289 - val_loss: 2.3226\n",
"Epoch 49/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.2374 - accuracy: 0.8276 - MulticlassKR: 1.4266 - val_loss: 5.5116 - val_accuracy: 0.8255 - val_MulticlassKR: 1.4254\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0262 - accuracy: 0.8364 - loss: 2.1351 - val_MulticlassKR: 1.0315 - val_accuracy: 0.8327 - val_loss: 2.2958\n",
"Epoch 50/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.2404 - accuracy: 0.8299 - MulticlassKR: 1.4328 - val_loss: 5.4923 - val_accuracy: 0.8248 - val_MulticlassKR: 1.4351\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0390 - accuracy: 0.8379 - loss: 2.1252 - val_MulticlassKR: 1.0438 - val_accuracy: 0.8320 - val_loss: 2.2825\n",
"Epoch 51/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.2273 - accuracy: 0.8302 - MulticlassKR: 1.4446 - val_loss: 5.4473 - val_accuracy: 0.8252 - val_MulticlassKR: 1.4494\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0535 - accuracy: 0.8396 - loss: 2.0654 - val_MulticlassKR: 1.0616 - val_accuracy: 0.8314 - val_loss: 2.2470\n",
"Epoch 52/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 5.1193 - accuracy: 0.8302 - MulticlassKR: 1.4615 - val_loss: 5.4205 - val_accuracy: 0.8219 - val_MulticlassKR: 1.4643\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0690 - accuracy: 0.8388 - loss: 2.0495 - val_MulticlassKR: 1.0761 - val_accuracy: 0.8328 - val_loss: 2.2247\n",
"Epoch 53/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 5.1053 - accuracy: 0.8338 - MulticlassKR: 1.4739 - val_loss: 5.3770 - val_accuracy: 0.8238 - val_MulticlassKR: 1.4766\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0853 - accuracy: 0.8401 - loss: 2.0240 - val_MulticlassKR: 1.0873 - val_accuracy: 0.8315 - val_loss: 2.2193\n",
"Epoch 54/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.9836 - accuracy: 0.8338 - MulticlassKR: 1.4889 - val_loss: 5.3285 - val_accuracy: 0.8259 - val_MulticlassKR: 1.4896\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.0977 - accuracy: 0.8366 - loss: 2.0653 - val_MulticlassKR: 1.1064 - val_accuracy: 0.8302 - val_loss: 2.2040\n",
"Epoch 55/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.9996 - accuracy: 0.8337 - MulticlassKR: 1.4994 - val_loss: 5.3168 - val_accuracy: 0.8272 - val_MulticlassKR: 1.4970\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1159 - accuracy: 0.8426 - loss: 1.9554 - val_MulticlassKR: 1.1209 - val_accuracy: 0.8351 - val_loss: 2.1460\n",
"Epoch 56/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.9064 - accuracy: 0.8372 - MulticlassKR: 1.5095 - val_loss: 5.2652 - val_accuracy: 0.8284 - val_MulticlassKR: 1.5102\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1261 - accuracy: 0.8412 - loss: 1.9709 - val_MulticlassKR: 1.1347 - val_accuracy: 0.8374 - val_loss: 2.1200\n",
"Epoch 57/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.9659 - accuracy: 0.8335 - MulticlassKR: 1.5204 - val_loss: 5.2111 - val_accuracy: 0.8284 - val_MulticlassKR: 1.5191\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1447 - accuracy: 0.8418 - loss: 1.9076 - val_MulticlassKR: 1.1494 - val_accuracy: 0.8370 - val_loss: 2.1104\n",
"Epoch 58/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.9272 - accuracy: 0.8351 - MulticlassKR: 1.5316 - val_loss: 5.1873 - val_accuracy: 0.8310 - val_MulticlassKR: 1.5290\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1581 - accuracy: 0.8381 - loss: 1.9410 - val_MulticlassKR: 1.1646 - val_accuracy: 0.8363 - val_loss: 2.1013\n",
"Epoch 59/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.8504 - accuracy: 0.8367 - MulticlassKR: 1.5386 - val_loss: 5.1892 - val_accuracy: 0.8263 - val_MulticlassKR: 1.5440\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1667 - accuracy: 0.8415 - loss: 1.9151 - val_MulticlassKR: 1.1772 - val_accuracy: 0.8379 - val_loss: 2.0835\n",
"Epoch 60/100\n",
- "15/15 [==============================] - 1s 82ms/step - loss: 4.7810 - accuracy: 0.8399 - MulticlassKR: 1.5500 - val_loss: 5.1203 - val_accuracy: 0.8298 - val_MulticlassKR: 1.5517\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1850 - accuracy: 0.8437 - loss: 1.8632 - val_MulticlassKR: 1.1927 - val_accuracy: 0.8359 - val_loss: 2.0553\n",
"Epoch 61/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.7313 - accuracy: 0.8394 - MulticlassKR: 1.5630 - val_loss: 5.1206 - val_accuracy: 0.8292 - val_MulticlassKR: 1.5662\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.1986 - accuracy: 0.8448 - loss: 1.8760 - val_MulticlassKR: 1.2034 - val_accuracy: 0.8342 - val_loss: 2.0410\n",
"Epoch 62/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.7666 - accuracy: 0.8406 - MulticlassKR: 1.5742 - val_loss: 5.0925 - val_accuracy: 0.8295 - val_MulticlassKR: 1.5692\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2100 - accuracy: 0.8459 - loss: 1.8273 - val_MulticlassKR: 1.2160 - val_accuracy: 0.8389 - val_loss: 1.9946\n",
"Epoch 63/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.6527 - accuracy: 0.8418 - MulticlassKR: 1.5808 - val_loss: 5.0593 - val_accuracy: 0.8302 - val_MulticlassKR: 1.5836\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2255 - accuracy: 0.8464 - loss: 1.7774 - val_MulticlassKR: 1.2324 - val_accuracy: 0.8372 - val_loss: 1.9850\n",
"Epoch 64/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.7434 - accuracy: 0.8410 - MulticlassKR: 1.5952 - val_loss: 5.0201 - val_accuracy: 0.8329 - val_MulticlassKR: 1.5966\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2352 - accuracy: 0.8434 - loss: 1.7999 - val_MulticlassKR: 1.2406 - val_accuracy: 0.8365 - val_loss: 1.9733\n",
"Epoch 65/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.7347 - accuracy: 0.8386 - MulticlassKR: 1.6056 - val_loss: 5.0073 - val_accuracy: 0.8337 - val_MulticlassKR: 1.6002\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2477 - accuracy: 0.8476 - loss: 1.7615 - val_MulticlassKR: 1.2563 - val_accuracy: 0.8363 - val_loss: 1.9566\n",
"Epoch 66/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.6701 - accuracy: 0.8414 - MulticlassKR: 1.6104 - val_loss: 4.9744 - val_accuracy: 0.8345 - val_MulticlassKR: 1.6125\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2580 - accuracy: 0.8476 - loss: 1.7418 - val_MulticlassKR: 1.2686 - val_accuracy: 0.8382 - val_loss: 1.9339\n",
"Epoch 67/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.5813 - accuracy: 0.8430 - MulticlassKR: 1.6230 - val_loss: 4.9599 - val_accuracy: 0.8336 - val_MulticlassKR: 1.6252\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2797 - accuracy: 0.8454 - loss: 1.7491 - val_MulticlassKR: 1.2778 - val_accuracy: 0.8407 - val_loss: 1.9260\n",
"Epoch 68/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.6265 - accuracy: 0.8420 - MulticlassKR: 1.6316 - val_loss: 4.9260 - val_accuracy: 0.8310 - val_MulticlassKR: 1.6337\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.2899 - accuracy: 0.8479 - loss: 1.7236 - val_MulticlassKR: 1.2878 - val_accuracy: 0.8410 - val_loss: 1.9411\n",
"Epoch 69/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.6232 - accuracy: 0.8426 - MulticlassKR: 1.6420 - val_loss: 4.8940 - val_accuracy: 0.8365 - val_MulticlassKR: 1.6376\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3019 - accuracy: 0.8483 - loss: 1.6799 - val_MulticlassKR: 1.3025 - val_accuracy: 0.8354 - val_loss: 1.9176\n",
"Epoch 70/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.5432 - accuracy: 0.8430 - MulticlassKR: 1.6507 - val_loss: 4.8714 - val_accuracy: 0.8355 - val_MulticlassKR: 1.6471\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3128 - accuracy: 0.8486 - loss: 1.6793 - val_MulticlassKR: 1.3139 - val_accuracy: 0.8432 - val_loss: 1.8546\n",
"Epoch 71/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.4822 - accuracy: 0.8438 - MulticlassKR: 1.6584 - val_loss: 4.8362 - val_accuracy: 0.8358 - val_MulticlassKR: 1.6575\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 1.3220 - accuracy: 0.8486 - loss: 1.6707 - val_MulticlassKR: 1.3299 - val_accuracy: 0.8423 - val_loss: 1.8357\n",
"Epoch 72/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.4781 - accuracy: 0.8444 - MulticlassKR: 1.6695 - val_loss: 4.8306 - val_accuracy: 0.8372 - val_MulticlassKR: 1.6670\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3397 - accuracy: 0.8487 - loss: 1.6309 - val_MulticlassKR: 1.3332 - val_accuracy: 0.8429 - val_loss: 1.8525\n",
"Epoch 73/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.5386 - accuracy: 0.8424 - MulticlassKR: 1.6777 - val_loss: 4.8021 - val_accuracy: 0.8364 - val_MulticlassKR: 1.6715\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3449 - accuracy: 0.8523 - loss: 1.5920 - val_MulticlassKR: 1.3529 - val_accuracy: 0.8413 - val_loss: 1.8322\n",
"Epoch 74/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.4138 - accuracy: 0.8447 - MulticlassKR: 1.6880 - val_loss: 4.7918 - val_accuracy: 0.8377 - val_MulticlassKR: 1.6845\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 1.3592 - accuracy: 0.8471 - loss: 1.6306 - val_MulticlassKR: 1.3657 - val_accuracy: 0.8431 - val_loss: 1.7962\n",
"Epoch 75/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.4090 - accuracy: 0.8476 - MulticlassKR: 1.6962 - val_loss: 4.7612 - val_accuracy: 0.8368 - val_MulticlassKR: 1.6925\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3692 - accuracy: 0.8469 - loss: 1.6310 - val_MulticlassKR: 1.3748 - val_accuracy: 0.8450 - val_loss: 1.7728\n",
"Epoch 76/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.4482 - accuracy: 0.8459 - MulticlassKR: 1.6987 - val_loss: 4.7491 - val_accuracy: 0.8363 - val_MulticlassKR: 1.7041\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3819 - accuracy: 0.8498 - loss: 1.6002 - val_MulticlassKR: 1.3847 - val_accuracy: 0.8436 - val_loss: 1.7622\n",
"Epoch 77/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.3394 - accuracy: 0.8462 - MulticlassKR: 1.7108 - val_loss: 4.7155 - val_accuracy: 0.8387 - val_MulticlassKR: 1.7075\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.3935 - accuracy: 0.8503 - loss: 1.5525 - val_MulticlassKR: 1.3909 - val_accuracy: 0.8456 - val_loss: 1.7458\n",
"Epoch 78/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.3768 - accuracy: 0.8482 - MulticlassKR: 1.7117 - val_loss: 4.6795 - val_accuracy: 0.8396 - val_MulticlassKR: 1.7135\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4010 - accuracy: 0.8518 - loss: 1.5257 - val_MulticlassKR: 1.4095 - val_accuracy: 0.8450 - val_loss: 1.7270\n",
"Epoch 79/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.3540 - accuracy: 0.8476 - MulticlassKR: 1.7259 - val_loss: 4.6666 - val_accuracy: 0.8388 - val_MulticlassKR: 1.7266\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4161 - accuracy: 0.8517 - loss: 1.5071 - val_MulticlassKR: 1.4145 - val_accuracy: 0.8425 - val_loss: 1.7228\n",
"Epoch 80/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.2509 - accuracy: 0.8469 - MulticlassKR: 1.7359 - val_loss: 4.6558 - val_accuracy: 0.8357 - val_MulticlassKR: 1.7321\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4280 - accuracy: 0.8526 - loss: 1.4839 - val_MulticlassKR: 1.4281 - val_accuracy: 0.8462 - val_loss: 1.6826\n",
"Epoch 81/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.2792 - accuracy: 0.8461 - MulticlassKR: 1.7397 - val_loss: 4.6639 - val_accuracy: 0.8364 - val_MulticlassKR: 1.7419\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4356 - accuracy: 0.8520 - loss: 1.4922 - val_MulticlassKR: 1.4364 - val_accuracy: 0.8461 - val_loss: 1.6689\n",
"Epoch 82/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.2849 - accuracy: 0.8465 - MulticlassKR: 1.7502 - val_loss: 4.6150 - val_accuracy: 0.8389 - val_MulticlassKR: 1.7488\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4442 - accuracy: 0.8516 - loss: 1.4950 - val_MulticlassKR: 1.4495 - val_accuracy: 0.8459 - val_loss: 1.6646\n",
"Epoch 83/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.2858 - accuracy: 0.8466 - MulticlassKR: 1.7563 - val_loss: 4.6256 - val_accuracy: 0.8382 - val_MulticlassKR: 1.7551\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4544 - accuracy: 0.8535 - loss: 1.4631 - val_MulticlassKR: 1.4591 - val_accuracy: 0.8445 - val_loss: 1.6525\n",
"Epoch 84/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.1836 - accuracy: 0.8491 - MulticlassKR: 1.7594 - val_loss: 4.5682 - val_accuracy: 0.8401 - val_MulticlassKR: 1.7607\n",
- "Epoch 85/100\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1970 - accuracy: 0.8497 - MulticlassKR: 1.7701 - val_loss: 4.5760 - val_accuracy: 0.8405 - val_MulticlassKR: 1.7660\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - MulticlassKR: 1.4672 - accuracy: 0.8545 - loss: 1.4279 - val_MulticlassKR: 1.4700 - val_accuracy: 0.8469 - val_loss: 1.6420\n",
+ "Epoch 85/100\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4714 - accuracy: 0.8513 - loss: 1.4660 - val_MulticlassKR: 1.4745 - val_accuracy: 0.8465 - val_loss: 1.6196\n",
"Epoch 86/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1455 - accuracy: 0.8507 - MulticlassKR: 1.7759 - val_loss: 4.5417 - val_accuracy: 0.8425 - val_MulticlassKR: 1.7734\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4830 - accuracy: 0.8523 - loss: 1.4406 - val_MulticlassKR: 1.4870 - val_accuracy: 0.8466 - val_loss: 1.6352\n",
"Epoch 87/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1810 - accuracy: 0.8506 - MulticlassKR: 1.7823 - val_loss: 4.5125 - val_accuracy: 0.8417 - val_MulticlassKR: 1.7786\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.4993 - accuracy: 0.8514 - loss: 1.4115 - val_MulticlassKR: 1.4946 - val_accuracy: 0.8452 - val_loss: 1.6060\n",
"Epoch 88/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1159 - accuracy: 0.8518 - MulticlassKR: 1.7922 - val_loss: 4.5125 - val_accuracy: 0.8391 - val_MulticlassKR: 1.7913\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5002 - accuracy: 0.8533 - loss: 1.3858 - val_MulticlassKR: 1.5038 - val_accuracy: 0.8477 - val_loss: 1.5762\n",
"Epoch 89/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.1807 - accuracy: 0.8500 - MulticlassKR: 1.7990 - val_loss: 4.4882 - val_accuracy: 0.8402 - val_MulticlassKR: 1.7938\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5100 - accuracy: 0.8533 - loss: 1.3975 - val_MulticlassKR: 1.5142 - val_accuracy: 0.8455 - val_loss: 1.5641\n",
"Epoch 90/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1548 - accuracy: 0.8504 - MulticlassKR: 1.8031 - val_loss: 4.5046 - val_accuracy: 0.8421 - val_MulticlassKR: 1.8073\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5211 - accuracy: 0.8535 - loss: 1.3996 - val_MulticlassKR: 1.5238 - val_accuracy: 0.8475 - val_loss: 1.5513\n",
"Epoch 91/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.1227 - accuracy: 0.8501 - MulticlassKR: 1.8102 - val_loss: 4.4483 - val_accuracy: 0.8408 - val_MulticlassKR: 1.8036\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5309 - accuracy: 0.8557 - loss: 1.3107 - val_MulticlassKR: 1.5346 - val_accuracy: 0.8476 - val_loss: 1.5482\n",
"Epoch 92/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.1302 - accuracy: 0.8512 - MulticlassKR: 1.8124 - val_loss: 4.4501 - val_accuracy: 0.8435 - val_MulticlassKR: 1.8101\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5376 - accuracy: 0.8533 - loss: 1.3776 - val_MulticlassKR: 1.5392 - val_accuracy: 0.8472 - val_loss: 1.5362\n",
"Epoch 93/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.0846 - accuracy: 0.8502 - MulticlassKR: 1.8184 - val_loss: 4.4205 - val_accuracy: 0.8425 - val_MulticlassKR: 1.8175\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5526 - accuracy: 0.8541 - loss: 1.3208 - val_MulticlassKR: 1.5509 - val_accuracy: 0.8493 - val_loss: 1.5215\n",
"Epoch 94/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 3.9720 - accuracy: 0.8539 - MulticlassKR: 1.8275 - val_loss: 4.4813 - val_accuracy: 0.8381 - val_MulticlassKR: 1.8186\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5585 - accuracy: 0.8545 - loss: 1.3069 - val_MulticlassKR: 1.5586 - val_accuracy: 0.8491 - val_loss: 1.4954\n",
"Epoch 95/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 3.9978 - accuracy: 0.8542 - MulticlassKR: 1.8309 - val_loss: 4.3855 - val_accuracy: 0.8440 - val_MulticlassKR: 1.8287\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5643 - accuracy: 0.8532 - loss: 1.3201 - val_MulticlassKR: 1.5686 - val_accuracy: 0.8466 - val_loss: 1.4972\n",
"Epoch 96/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 4.0764 - accuracy: 0.8506 - MulticlassKR: 1.8369 - val_loss: 4.3828 - val_accuracy: 0.8443 - val_MulticlassKR: 1.8371\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5737 - accuracy: 0.8545 - loss: 1.2825 - val_MulticlassKR: 1.5777 - val_accuracy: 0.8466 - val_loss: 1.5008\n",
"Epoch 97/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 4.0436 - accuracy: 0.8517 - MulticlassKR: 1.8470 - val_loss: 4.3730 - val_accuracy: 0.8457 - val_MulticlassKR: 1.8344\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5788 - accuracy: 0.8572 - loss: 1.2986 - val_MulticlassKR: 1.5852 - val_accuracy: 0.8477 - val_loss: 1.4803\n",
"Epoch 98/100\n",
- "15/15 [==============================] - 1s 81ms/step - loss: 3.9989 - accuracy: 0.8532 - MulticlassKR: 1.8491 - val_loss: 4.3596 - val_accuracy: 0.8445 - val_MulticlassKR: 1.8446\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5931 - accuracy: 0.8521 - loss: 1.2908 - val_MulticlassKR: 1.5886 - val_accuracy: 0.8442 - val_loss: 1.4900\n",
"Epoch 99/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 3.9820 - accuracy: 0.8541 - MulticlassKR: 1.8539 - val_loss: 4.3444 - val_accuracy: 0.8442 - val_MulticlassKR: 1.8477\n",
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.5954 - accuracy: 0.8555 - loss: 1.2954 - val_MulticlassKR: 1.6007 - val_accuracy: 0.8503 - val_loss: 1.4417\n",
"Epoch 100/100\n",
- "15/15 [==============================] - 1s 80ms/step - loss: 3.9592 - accuracy: 0.8523 - MulticlassKR: 1.8626 - val_loss: 4.3177 - val_accuracy: 0.8448 - val_MulticlassKR: 1.8529\n"
+ "\u001b[1m15/15\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - MulticlassKR: 1.6085 - accuracy: 0.8595 - loss: 1.2235 - val_MulticlassKR: 1.6096 - val_accuracy: 0.8479 - val_loss: 1.4542\n"
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
- ""
+ ""
]
},
+ "execution_count": 5,
"metadata": {},
- "execution_count": 5
+ "output_type": "execute_result"
}
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "p1rWZTZBHEIR",
- "outputId": "7cb00f9b-0f84-40f0-c5fa-b29fc0a00c92"
- }
+ "source": [
+ "# fit the model\n",
+ "model.fit(\n",
+ " x_train,\n",
+ " y_train,\n",
+ " batch_size=4096,\n",
+ " epochs=100,\n",
+ " validation_data=(x_test, y_test),\n",
+ " shuffle=True,\n",
+ " verbose=1,\n",
+ ")"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "### model exportation\n",
- "\n",
- "Once training is finished, the model can be optimized for inference by using the `vanilla_export()` method."
- ],
"metadata": {
"id": "s6TDG4nflyya"
- }
+ },
+ "source": [
+ "### Model exportation\n",
+ "\n",
+ "Once training is finished, the model can be optimized for inference by using the\n",
+ "`vanilla_export()` method.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 6,
+ "metadata": {
+ "id": "Nr2nMclLHHvI"
+ },
+ "outputs": [],
"source": [
"# once training is finished you can convert\n",
"# SpectralDense layers into Dense layers and SpectralConv2D into Conv2D\n",
"# which optimize performance for inference\n",
"vanilla_model = model.vanilla_export()"
- ],
- "outputs": [],
- "metadata": {
- "id": "Nr2nMclLHHvI"
- }
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "### certificates generation and adversarial attacks"
- ],
"metadata": {
"id": "V32dqI2NmMPi"
- }
+ },
+ "source": [
+ "### Certificates generation and adversarial attacks\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 7,
- "source": [
- "import foolbox as fb\n",
- "from tensorflow import convert_to_tensor\n",
- "import matplotlib.pyplot as plt\n",
- "import tensorflow as tf"
- ],
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Matplotlib created a temporary config/cache directory at /tmp/matplotlib-an1t4aqt because the default path (/home/thibaut.boissin/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n"
- ]
- }
- ],
"metadata": {
"id": "m8h2gEDuIS5q"
- }
+ },
+ "outputs": [],
+ "source": [
+ "import keras.ops as K\n",
+ "import foolbox as fb\n",
+ "import matplotlib.pyplot as plt"
+ ]
},
{
"cell_type": "code",
"execution_count": 8,
+ "metadata": {
+ "id": "AMdpLMM1IXZJ"
+ },
+ "outputs": [],
"source": [
"# we will test it on 10 samples one of each class\n",
"nb_adv = 10\n",
"\n",
- "hkr_fmodel = fb.TensorFlowModel(vanilla_model, bounds=(0., 1.), device=\"/GPU:0\")"
- ],
- "outputs": [],
- "metadata": {
- "id": "AMdpLMM1IXZJ"
- }
+ "hkr_fmodel = fb.TensorFlowModel(vanilla_model, bounds=(0.0, 1.0), device=\"/GPU:0\")"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "In order to test the robustness of the model, the first correctly classified element of each class are selected."
- ],
"metadata": {
"id": "SLRFGRmcmw6K"
- }
+ },
+ "source": [
+ "In order to test the robustness of the model, the first correctly classified element of\n",
+ "each class are selected.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ry5uB9QdJexi",
+ "outputId": "6126888e-d256-4783-d284-0e40555c5dff"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1m10/10\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n"
+ ]
+ }
+ ],
"source": [
"# strategy: first\n",
"# we select a sample from each class.\n",
"images_list = []\n",
"labels_list = []\n",
"# select only a few element from the test set\n",
- "selected=np.random.choice(len(y_test_ord), 500)\n",
+ "selected = np.random.choice(len(y_test_ord), 500)\n",
"sub_y_test_ord = y_test_ord[:300]\n",
"sub_x_test = x_test[:300]\n",
"# drop misclassified elements\n",
- "misclassified_mask = tf.equal(tf.argmax(vanilla_model.predict(sub_x_test), axis=-1), sub_y_test_ord)\n",
+ "misclassified_mask = K.equal(\n",
+ " K.argmax(vanilla_model.predict(sub_x_test), axis=-1), sub_y_test_ord\n",
+ ")\n",
"sub_x_test = sub_x_test[misclassified_mask]\n",
"sub_y_test_ord = sub_y_test_ord[misclassified_mask]\n",
"# now we will build a list with input image for each element of the matrix\n",
"for i in range(10):\n",
- " # select the first element of the ith label\n",
- " label_mask = [sub_y_test_ord==i]\n",
- " x = sub_x_test[label_mask][0]\n",
- " y = sub_y_test_ord[label_mask][0]\n",
- " # convert it to tensor for use with foolbox\n",
- " images = convert_to_tensor(x.astype(\"float32\"), dtype=\"float32\")\n",
- " labels = convert_to_tensor(y, dtype=\"int64\")\n",
- " # repeat the input 10 times, one per misclassification target\n",
- " images_list.append(images)\n",
- " labels_list.append(labels)\n",
- "images = convert_to_tensor(images_list)\n",
- "labels = convert_to_tensor(labels_list)"
- ],
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/home/thibaut.boissin/envs/deel-lip_github/lib/python3.7/site-packages/ipykernel_launcher.py:17: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
- "/home/thibaut.boissin/envs/deel-lip_github/lib/python3.7/site-packages/ipykernel_launcher.py:18: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n"
- ]
- }
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "ry5uB9QdJexi",
- "outputId": "6126888e-d256-4783-d284-0e40555c5dff"
- }
+ " # select the first element of the ith label\n",
+ " label_mask = sub_y_test_ord == i\n",
+ " x = sub_x_test[label_mask][0]\n",
+ " y = sub_y_test_ord[label_mask][0]\n",
+ " # convert it to tensor for use with foolbox\n",
+ " images = K.convert_to_tensor(x.astype(\"float32\"), dtype=\"float32\")\n",
+ " labels = K.convert_to_tensor(y, dtype=\"int64\")\n",
+ " # repeat the input 10 times, one per misclassification target\n",
+ " images_list.append(images)\n",
+ " labels_list.append(labels)\n",
+ "images = K.convert_to_tensor(images_list)\n",
+ "labels = K.convert_to_tensor(labels_list)"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "In order to build a certficate, we take for each sample the top 2 output and apply this formula:\n",
- "$$ \\epsilon \\geq \\frac{\\text{top}_1 - \\text{top}_2}{2} $$\n",
- "Where epsilon is the robustness radius for the considered sample."
- ],
"metadata": {
"id": "GJctMBKrnqmC"
- }
+ },
+ "source": [
+ "In order to build a certficate, we take for each sample the top 2 output and apply this\n",
+ "formula: $$ \\epsilon \\geq \\frac{\\text{top}\\_1 - \\text{top}\\_2}{2} $$ Where epsilon is\n",
+ "the robustness radius for the considered sample.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 10,
- "source": [
- "values, classes = tf.math.top_k(hkr_fmodel(images), k=2)\n",
- "certificates = (values[:, 0] - values[:, 1]) / 2\n",
- "certificates"
- ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "vxbkWNsdBx0y",
+ "outputId": "0d419744-f63e-4207-eb31-ebc7e8d730c0"
+ },
"outputs": [
{
- "output_type": "execute_result",
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "W0000 00:00:1725629243.480682 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.505069 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.505555 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.506069 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.506551 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.507034 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.507521 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.507994 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.508471 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.508982 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.509448 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.509927 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.510411 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.510887 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.511373 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.511859 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.512350 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.512832 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.513309 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.513782 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.519029 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629243.519545 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.190268 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.190831 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.191379 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.191918 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.192461 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.193017 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.193583 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.194147 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.194701 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.195260 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.195811 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.196363 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.196916 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.197476 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.198031 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.198586 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.199145 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.199726 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.200277 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.200839 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.201426 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.201985 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.202550 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.203135 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n"
+ ]
+ },
+ {
"data": {
"text/plain": [
- ""
+ "array([0.14209856, 0.8908168 , 0.21824726, 0.36170343, 0.07103111,\n",
+ " 0.1333401 , 0.06068115, 0.24836099, 0.57530606, 0.10581052],\n",
+ " dtype=float32)"
]
},
+ "execution_count": 10,
"metadata": {},
- "execution_count": 10
+ "output_type": "execute_result"
}
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "vxbkWNsdBx0y",
- "outputId": "0d419744-f63e-4207-eb31-ebc7e8d730c0"
- }
+ "source": [
+ "values, classes = K.top_k(hkr_fmodel(images), k=2)\n",
+ "certificates = (values[:, 0] - values[:, 1]) / 2\n",
+ "certificates.numpy()"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "now we will attack the model to check if the certificates are respected. In this setup `L2CarliniWagnerAttack` is used but in practice as these kind of networks are gradient norm preserving, other attacks gives very similar results."
- ],
"metadata": {
"id": "E2dqSmNPnVpK"
- }
+ },
+ "source": [
+ "now we will attack the model to check if the certificates are respected. In this setup\n",
+ "`L2CarliniWagnerAttack` is used but in practice as these kind of networks are gradient\n",
+ "norm preserving, other attacks gives very similar results.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 11,
- "source": [
- "attack = fb.attacks.L2CarliniWagnerAttack(binary_search_steps=6, steps=8000)\n",
- "imgs, advs, success = attack(hkr_fmodel, images, labels, epsilons=None)\n",
- "dist_to_adv = np.sqrt(np.sum(np.square(images - advs), axis=(1,2,3)))\n",
- "dist_to_adv"
- ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UgqlVcLRKzSD",
+ "outputId": "34fded95-9d16-4c60-8af0-45ebb8c01b6e"
+ },
"outputs": [
{
- "output_type": "execute_result",
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "W0000 00:00:1725629244.976329 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.976921 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.977516 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.978075 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.978634 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.979190 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.979778 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.980353 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.980934 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.981503 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.982109 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.982718 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.983324 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.987048 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.987622 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.988175 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.988749 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.989425 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.989992 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.990705 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.991299 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.991880 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.992729 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.993288 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.993853 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.994466 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629244.999977 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.000524 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.001064 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.001595 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.004791 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.005327 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.005895 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.006435 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.006984 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.007538 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.008090 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.009770 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.010318 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.010871 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.011433 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.012012 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.012570 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.013121 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.013751 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.014513 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.015393 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.016520 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n",
+ "W0000 00:00:1725629245.017903 871063 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n"
+ ]
+ },
+ {
"data": {
"text/plain": [
- "array([1.3944995 , 3.5208094 , 1.6824133 , 1.9192038 , 0.5746496 ,\n",
- " 0.7780392 , 0.39687884, 1.1619285 , 2.367604 , 0.48984095],\n",
+ "array([1.0559031 , 3.8602312 , 1.4908539 , 1.4382323 , 0.47069952,\n",
+ " 0.75099194, 0.42759493, 1.0656103 , 3.062126 , 0.6121775 ],\n",
" dtype=float32)"
]
},
+ "execution_count": 11,
"metadata": {},
- "execution_count": 11
+ "output_type": "execute_result"
}
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "UgqlVcLRKzSD",
- "outputId": "34fded95-9d16-4c60-8af0-45ebb8c01b6e"
- }
+ "source": [
+ "attack = fb.attacks.L2CarliniWagnerAttack(binary_search_steps=6, steps=8000)\n",
+ "imgs, advs, success = attack(hkr_fmodel, images, labels, epsilons=None)\n",
+ "dist_to_adv = np.sqrt(np.sum(np.square(images - advs), axis=(1, 2, 3)))\n",
+ "dist_to_adv"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "As we can see the certificate are respected."
- ],
"metadata": {
"id": "YkoroIBUqZqy"
- }
+ },
+ "source": [
+ "As we can see the certificate are respected.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 12,
- "source": [
- "tf.assert_less(certificates, dist_to_adv)"
- ],
- "outputs": [],
"metadata": {
"id": "M9WvQIyqnlpg"
- }
+ },
+ "outputs": [],
+ "source": [
+ "np.testing.assert_array_less(certificates, dist_to_adv)"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "Finally we can take a visual look at the obtained examples.\n",
- "We first start with utility functions for display."
- ],
"metadata": {
"id": "u3ooZSlcqdx6"
- }
+ },
+ "source": [
+ "Finally we can take a visual look at the obtained examples. We first start with utility\n",
+ "functions for display.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 13,
+ "metadata": {
+ "id": "1Sp3RsmPQ5eM"
+ },
+ "outputs": [],
"source": [
"class_mapping = {\n",
- " 0: \"T-shirt/top\",\n",
- " 1: \"Trouser\",\n",
- " 2: \"Pullover\",\n",
- " 3: \"Dress\",\n",
- " 4: \"Coat\",\n",
- " 5: \"Sandal\",\n",
- " 6: \"Shirt\",\n",
- " 7: \"Sneaker\",\n",
- " 8: \"Bag\",\n",
- " 9: \"Ankle boot\",\n",
+ " 0: \"T-shirt/top\",\n",
+ " 1: \"Trouser\",\n",
+ " 2: \"Pullover\",\n",
+ " 3: \"Dress\",\n",
+ " 4: \"Coat\",\n",
+ " 5: \"Sandal\",\n",
+ " 6: \"Shirt\",\n",
+ " 7: \"Sneaker\",\n",
+ " 8: \"Bag\",\n",
+ " 9: \"Ankle boot\",\n",
"}"
- ],
- "outputs": [],
- "metadata": {
- "id": "1Sp3RsmPQ5eM"
- }
+ ]
},
{
"cell_type": "code",
"execution_count": 14,
- "source": [
- "def adversarial_viz(model, images, advs, class_mapping):\n",
- " \"\"\"\n",
- " This functions shows for each sample: \n",
- " - the original image\n",
- " - the adversarial image\n",
- " - the difference map\n",
- " - the certificate and the observed distance to adversarial \n",
- " \"\"\"\n",
- " scale = 1.5\n",
- " kwargs={}\n",
- " nb_imgs = images.shape[0]\n",
- " # compute certificates\n",
- " values, classes = tf.math.top_k(model(images), k=2)\n",
- " certificates = (values[:, 0] - values[:, 1]) / 2\n",
- " # compute difference distance to adversarial\n",
- " dist_to_adv = np.sqrt(np.sum(np.square(images - advs), axis=(1,2,3)))\n",
- " # find classes labels for imgs and advs\n",
- " orig_classes = [class_mapping[i] for i in tf.argmax(model(images), axis=-1).numpy()]\n",
- " advs_classes = [class_mapping[i] for i in tf.argmax(model(advs), axis=-1).numpy()]\n",
- " # compute differences maps\n",
- " if images.shape[-1] != 3:\n",
- " diff_pos = np.clip(advs - images, 0, 1.)\n",
- " diff_neg = np.clip(images - advs, 0, 1.)\n",
- " diff_map = np.concatenate([diff_neg, diff_pos, np.zeros_like(diff_neg)], axis=-1)\n",
- " else:\n",
- " diff_map = np.abs(advs - images)\n",
- " # expands image to be displayed\n",
- " if images.shape[-1] != 3:\n",
- " images = np.repeat(images, 3, -1)\n",
- " if advs.shape[-1] != 3:\n",
- " advs = np.repeat(advs, 3, -1)\n",
- " # create plot\n",
- " figsize = (3 * scale, nb_imgs * scale)\n",
- " fig, axes = plt.subplots(\n",
- " ncols=3,\n",
- " nrows=nb_imgs,\n",
- " figsize=figsize,\n",
- " squeeze=False,\n",
- " constrained_layout=True,\n",
- " **kwargs,\n",
- " )\n",
- " for i in range(nb_imgs):\n",
- " ax = axes[i][0]\n",
- " ax.set_title(orig_classes[i])\n",
- " ax.set_xticks([])\n",
- " ax.set_yticks([])\n",
- " ax.axis(\"off\")\n",
- " ax.imshow(images[i])\n",
- " ax = axes[i][1]\n",
- " ax.set_title(advs_classes[i])\n",
- " ax.set_xticks([])\n",
- " ax.set_yticks([])\n",
- " ax.axis(\"off\")\n",
- " ax.imshow(advs[i])\n",
- " ax = axes[i][2]\n",
- " ax.set_title(f\"certif: {certificates[i]:.2f}, obs: {dist_to_adv[i]:.2f}\")\n",
- " ax.set_xticks([])\n",
- " ax.set_yticks([])\n",
- " ax.axis(\"off\")\n",
- " ax.imshow(diff_map[i]/diff_map[i].max())"
- ],
- "outputs": [],
"metadata": {
"id": "UWZ6V1wt0WwR"
- }
+ },
+ "outputs": [],
+ "source": [
+ "def adversarial_viz(model, images, advs, class_mapping):\n",
+ " \"\"\"\n",
+ " This functions shows for each sample:\n",
+ " - the original image\n",
+ " - the adversarial image\n",
+ " - the difference map\n",
+ " - the certificate and the observed distance to adversarial\n",
+ " \"\"\"\n",
+ " scale = 1.5\n",
+ " kwargs = {}\n",
+ " nb_imgs = images.shape[0]\n",
+ " # compute certificates\n",
+ " values, classes = K.top_k(model(images), k=2)\n",
+ " certificates = (values[:, 0] - values[:, 1]) / 2\n",
+ " # compute difference distance to adversarial\n",
+ " dist_to_adv = np.sqrt(np.sum(np.square(images - advs), axis=(1, 2, 3)))\n",
+ " # find classes labels for imgs and advs\n",
+ " orig_classes = [class_mapping[i] for i in K.argmax(model(images), axis=-1).numpy()]\n",
+ " advs_classes = [class_mapping[i] for i in K.argmax(model(advs), axis=-1).numpy()]\n",
+ " # compute differences maps\n",
+ " if images.shape[-1] != 3:\n",
+ " diff_pos = np.clip(advs - images, 0, 1.0)\n",
+ " diff_neg = np.clip(images - advs, 0, 1.0)\n",
+ " diff_map = np.concatenate(\n",
+ " [diff_neg, diff_pos, np.zeros_like(diff_neg)], axis=-1\n",
+ " )\n",
+ " else:\n",
+ " diff_map = np.abs(advs - images)\n",
+ " # expands image to be displayed\n",
+ " if images.shape[-1] != 3:\n",
+ " images = np.repeat(images, 3, -1)\n",
+ " if advs.shape[-1] != 3:\n",
+ " advs = np.repeat(advs, 3, -1)\n",
+ " # create plot\n",
+ " figsize = (3 * scale, nb_imgs * scale)\n",
+ " fig, axes = plt.subplots(\n",
+ " ncols=3,\n",
+ " nrows=nb_imgs,\n",
+ " figsize=figsize,\n",
+ " squeeze=False,\n",
+ " constrained_layout=True,\n",
+ " **kwargs,\n",
+ " )\n",
+ " for i in range(nb_imgs):\n",
+ " ax = axes[i][0]\n",
+ " ax.set_title(orig_classes[i])\n",
+ " ax.set_xticks([])\n",
+ " ax.set_yticks([])\n",
+ " ax.axis(\"off\")\n",
+ " ax.imshow(images[i])\n",
+ " ax = axes[i][1]\n",
+ " ax.set_title(advs_classes[i])\n",
+ " ax.set_xticks([])\n",
+ " ax.set_yticks([])\n",
+ " ax.axis(\"off\")\n",
+ " ax.imshow(advs[i])\n",
+ " ax = axes[i][2]\n",
+ " ax.set_title(f\"certif: {certificates[i]:.2f}, obs: {dist_to_adv[i]:.2f}\")\n",
+ " ax.set_xticks([])\n",
+ " ax.set_yticks([])\n",
+ " ax.axis(\"off\")\n",
+ " ax.imshow(diff_map[i] / diff_map[i].max())"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "When looking at the adversarial examples we can see that the network has interresting properties:\n",
- "\n",
- "#### predictability\n",
- "by looking at the certificates, we can predict if the adversarial example will be close of not\n",
- "#### disparity among classes\n",
- "As we can see, the attacks are very efficent on similar classes (eg. T-shirt/top, and Shirt ). This denote that all classes are not made equal regarding robustness.\n",
- "#### explainability\n",
- "The network is more explainable: attacks can be used as counterfactuals.\n",
- "We can tell that removing the inscription on a T-shirt turns it into a shirt makes sense. Non robust examples reveals that the network rely on textures rather on shapes to make it's decision."
- ],
"metadata": {
"id": "LLE_2Y4_r1kq"
- }
+ },
+ "source": [
+ "When looking at the adversarial examples we can see that the network has interesting\n",
+ "properties:\n",
+ "\n",
+ "#### Predictability\n",
+ "\n",
+ "by looking at the certificates, we can predict if the adversarial example will be close\n",
+ "of not\n",
+ "\n",
+ "#### Disparity among classes\n",
+ "\n",
+ "As we can see, the attacks are very efficent on similar classes (eg. T-shirt/top, and\n",
+ "Shirt ). This denote that all classes are not made equal regarding robustness.\n",
+ "\n",
+ "#### Explainability\n",
+ "\n",
+ "The network is more explainable: attacks can be used as counterfactuals. We can tell\n",
+ "that removing the inscription on a T-shirt turns it into a shirt makes sense. Non-robust\n",
+ "examples reveal that the network relies on textures rather on shapes to make its\n",
+ "decision.\n"
+ ]
},
{
"cell_type": "code",
"execution_count": 15,
- "source": [
- "adversarial_viz(hkr_fmodel, images, advs, class_mapping)"
- ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "TZPR4_b68hex",
+ "outputId": "bce7a55d-2a51-4315-b7b8-a3bf513b1cab"
+ },
"outputs": [
{
- "output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAARACAYAAABXxGDbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd7wfVZn/P08a6Y1AIKQBIUBoAelFirhKE1xFxcq6FlZZ1pUVFXXFzvrT1UXXVVkLohTXighYgFAEqYbQA6SQkJ5w0xNSzu+PmTvznuF7vvd7M7d87+V5v1555fnOnJk5M2fm3POU8xwLIchxHMfZMfp0dwUcx3F6Mt6JOo7jVMA7UcdxnAp4J+o4jlMB70Qdx3Eq4J2o4zhOBZq2EzWzeWZ2amTfCWb2dFfXyWk/Zna+md1dZ//NZvaerqxTM1J+p81sXzObaWZrzeyi7qxbR2FmM8zsfd1dj46mwztRM1uHf9vNbCN+v6MjrhFCuCuEsG8b9ajZCZvZeWZ2jZlNNrNgZv06ok6vdMzseDO7x8xWm9kqM/uLmR3R1nEhhNNCCFfVOW/dTrinkr57U1p/13inL5F0ewhhWAjhigbON93MHjKzDen/0yPldjKzH5jZ/LSDnmlmp5XKDDaz75jZirQ979zB2+wSzOxCM3vQzDab2Y/bKPs2M3s6va9lZnaVmQ3H/v3N7LZ0/7Nm9sa2rt/hnWgIYWjrP0nPSzoL237W0dcr00CneIakmzq7Hq8k0pfwRknfkjRa0h6SPidpc8Xz9ro/cO24p0mSHm/wnAMk/VbSTyWNknSVpN+m28v0k7RA0omSRkj6tKSfm9lklPm+knbcP/3/Xxusc3exSNIXJf2wgbJ/kXRcCGGEpL2UPI8vSlnb/FbJuzxa0gck/dTMptY9Ywih0/5Jmifp1Dr7x6QVbpG0StJdkvrg2H+TNEvSaknXSxqY7jtJ0sLSdT6elt0s6VpJ2yVtlLRO0iVpuT6SlqbXfV5SSPevk3RMuv/TkuZLWibpJ5JGpMdOTst/QEmjLZb0b535/HrKP0mHS2qJ7Dtf0t2SvibpRUlzJZ2G/TMkvQ9l/yLpG5JWSvqlpE2StqVtVPMaXXifEyT9StLytH7fxr73Snoyvcc/SJqEfUHShyU9k97/nem29el9vZXvtKTb0nvelO6f2ka9/k7SC5IM256X9PoG72uWpDel8n6S1kgavoPP6FhJD6Tf7AOSji219Vck3Z9e47eSRqf7Bir5I7BSSX/wgKSx7bz2FyX9uB3lh6bf+E3p7wPT583n+EdJX6h3nu62iV4saaGkXSSNlXSpkperlbdIer2kPSUdrOQji3GeklHmyBDCeSqOgr+aljlS0pwQwgpJr063jUzL3Jue/3xJJyv5KzVU0rdL1zlZ0j5KXtyPx+y2rzBmS9qWqkanmdmo0v6jJD2t5I/XVyX9wMwscq6jJM1R8j68U9IFku5N22hkp9S+Acysr5I/+POV/EHdQ9J16b6zlby7f6/kXb5LyR9yco6Se5sWQmh99w5J7+t6FgwhnJKe48J0/2wzu9HMPhGp3gGSZoX0q0+ZlW5v677GSpqqfNR7ZHqPn0vV+UfN7E1tnSc912hJv5d0haSdJf2npN+b2c4o9m4lf3B2l7Q1LStJ71EyMp6QHnuBkkGQzOwTZnZjI3VosJ7Hm9lqSWslvUnSN+sVV9K5RunuTnSLkoc5KYSwJSR2Ib4IV4QQFoUQVkn6naTpdc51RQhhQQhhY50ybany75D0nyGEOSGEdZI+KeltJRXscyGE9SGERyX9SEnn/YomhLBG0vFK/gBeKWm5md2QfqCSND+EcGUIYZsSVXN3JZ1kLRaFEL4VQtjaRlt2NUdKGifpY2n7bwohtNpqL5D0lRDCkyGErZK+LGm6mU3C8V8JIaza0XsKIZwZQrg8snuokpEfWS1pWL1zmll/ST+TdFUI4al083glncZqJfd7oaSrzGz/Bqp5hqRnQghXp+13raSnJJ2FMleHEB4LIayX9BlJb0n/QG1R0nlOCSFsCyE8lL5XCiFcHkI4s4HrN0QI4e6QqPPjJf0/JZqslPyhXybpY2bW38z+TonZY3C983VZJ2pmE+l0Sjf/P0nPSvqjmc2p8Zd2CeQNSl6WGAsaqMbpqt+JjlPyV7iV+UpsJvzgF5T2j2vgur2etAM5P4TQ+hGOU/4XfgnKbUjFWFs20o7dwQQlfwy21tg3SdJ/mVmLmbUoMU2ZktFqK515X+skDS9tG65kpFUTM+sj6WpJLynpKFvZqKRD+2II4aUQwh2SbleiebVF+ftR+jv2HOZL6q9EQ7laiRnkOjNbZGZfTTv5TiOE8IKkW5RqFCGELUo0hjOUvLMXS/q5Em05Spd1oiGE50PR6aQQwtoQwsUhhL0kvUHSR83sNTt6iXq/zWw3JSOghyPlpcTWydHDRCUqx1Jsm1Dav2hHKtubSUc1P1YbalDs8DZ+dxcLJE2MOIYWSPpgCGEk/g0KIdyDMp15H49LOrhkIjlYEcdUWu4HSgYHb0o7j1Zm1Tik0bqXvx8p+UZewO/y97NF0opUE/1cCGGaErvqmUpU/86mn6S9W3+EEGaFEE4MIewcQnidErPe/fVO0K3qvJmdaWZT0kZdrcSYvr2DTr9UyQNo5TRJt8BcsDy9FstcK+lfzWxPMxuqRC27vjT6+EwaAnKApH9Q4vB6RWNm+5nZxWY2Pv09QYmZ468dcPqlksZHPM1dyf1KnImXm9kQMxtoZsel+74r6ZPpOyEzG2Fm57ZxvvL7WYUZSr6di9IQptaR5W2R8v+jxPN+Vg3zwp1K/AmfNLN+6T2erGSU2BpyNi9y3pskTTWzt6fHvlXSNCW25FbeaWbTzGywpM9L+kUIYZuZnWxmB6Wq/RolnWtDfUF6rYGS+krqm7ZNzSgIM3uHmU1M5UmSviTpVuw/OD1+sJn9m5KB14/rXb+7baL7SPqzEnXkXknfCSHc3kHn/oqkT6cq1r+pZA9N1covSfpLWuZoJSESVyt5keYq8Y7+c+m8dygxQdwq6WshhD92UH17MmuVOE3uM7P1SjrPx5SoQ1W5TcmIaomZreiA8+0QqT33LElTlHQyC5V41RVC+LWk/1Ciiq5Rcu+nRU7VymVKbI0tZvaWtq5vyaSESyN1e0mJGvpuJZ7t90o6J90uM7vUzG5O5UmSPqjEv7DESjHc6aj0bCWmr9VKbNzvhs10gpIIilr1WKlkBHmxEi/7JZLOTB25rVytpFNaosQj3zqRYDdJv1DSgT6p5Du7ulz/CJ9WYob4hBJn5MZ0G82IE9Oy0yTdk76nf1FiB30/zvUuJX8sl0l6jaTXhhDqhupZ0Y/TO0n/Ki2RtFersXoHzjFZScfaP2IXc5xej5n9UdK/hBCe7O66NAu9Lpg5wmhJn9nRDtRxnIQQQiMOplcUr4iRaEfgI1HHcWrhnajjOE4Futux5DiO06PxTtRxHKcCdR1LZtaluv7hhx+eyV/72tcy+Xe/+10mX3fddZm8aFHtOPeJEydm8kc+8pFMnjIlyzymf/7nPHJp3rx5O1TfHSWEEJs3Xon2thdjs/v27VtTfumll6LHH3BAPjX7q1/9aibfdFM+Kezqq6/O5NWryzMTE0aNyqfa/9u//VsmT5iQx2X/67/miYRWrlwZrVNn0CztpZ0gj4bMuV/leVHbcnE/hNRzHuMqyLtDfjBSjRMhL4fMPH78MqN5DMu9Twd5GjqrvWL4SNRxHKcC3ok6juNUoK53vqPU+f798zwCF154YWHf61//+kyeNCmfdktVfd99c0Vh4MCBmfziiy9m8rZtud6y++65UvLkk3lM8IYNGzKZ17rvvvsy+Te/+U0mX39958zobBb1kGo7n+vgwbmy9573FFfuOPXUPPPfuHF57pXHHnssk48++uhMHjAgn63Jd23t2jw3xp577pnJt9xyS80yY8fmOWBmzcqnd//5z3/O5D/84Q/qDJqlvTQSMnMq7Qb5juIhfaGrM4vOuyBfB3kI5Cf2yeWhz+TyOsx+/xzMB8yAwqQJnIzPFPm/Vefg6rzjOE4PwjtRx3GcCnSaOn/YYYdl8mc+85lM3nnnnQvltmzJXYZUyVmvPn3yvn7o0NwVuX79+kzeujV37Q0aNCiTN23alMlUX3ndfv1yNyHVT3qNJemEE07I5JinuRGaRT3kvfLevvGNb2Qyn41UVLFXrcp1xWXLlmXyHnvk6SPZjjQZvPBCnh1t1113zeQ5c+ZkMs0KbN/hw3PFkedk+0rSG9+YrzG2bt067Sid1l59I+0Vy120N+RXQaZu/jsVeSoXh0OX/hCKXJ5/LjoGOZ3uxcpCZ87OZVoMvgT5WciM6XgI8gbIry1V9X8h73hruTrvOI7To/BO1HEcpwKdps7fe++9mUzVmeqgJO20Ux5BTLWd9aJM9ZLHbt++vaYcMxFwO1XFzZvz1IE0HUhF88Eb3vAG7SjNos4TRkPwGZcnIlDFpjpPdXnkyJGZvHx5Ho59/PHHZ/KCBblbl+1FNT9mZom9G2zH8rXf/e4dT5Leae3VD+3FK/A2aKFA4HxhceDpkH9QugiD8qEvT16cy/NgGjgNuvfNjJL/OGS8ZScidz/T1z8LE0FhMkA+D0YTqOereBtlq0R7cHXecRynB+GdqOM4TgU6NCnz9OnTM5kqPGV6U6WiylZWx2rBMjFTBLfTY0u1kdCMQI88g/MlaciQPBR52rRpmfzEE0+0Ve2mgfPlOYmB0QaMbqAaXd7HtmA5mj14vWeeeabm9paWlkymiYbz9inzWjQvlOfU06zAduUkjW6Fr29MAcUXOgXq/LN/Q5ldIJdXTBoDGYt0cIq9Qa3m8rqFNUBhVtgV5eehyAhWCfVYzon6uHA5KwMsDPp3yJ9Xc+MjUcdxnAp4J+o4jlOBDvXO33lnHs271175arD08JZTq8WC6tesqb0cUiMeW6rtVDmpQlJtjJkUys+G5W6/PV+U9POfb5/C0Sze+V/84heZzPnuK1bkeh9Vc6lojuFEhsWLc2WM7cK24LHcTrMJ5dgkC8qMsqBcPtevfvWrTL7mmmvUHpqlvahdf5s7mJuOOrGUrD7fygO5uMv8XF4OTzrVcFoG+kM+ADKc7doEeRnkxyFz2UzOtZeKwfdcb7q9cTDunXccx+lBeCfqOI5TgQ71zjMFHb2m9OiW1Xmq2AzYHjEi9/WNHz8+k6lesgzVc5bhdgZfc64360BYb6moHp500kmZ3F51vlkYNmxYJlMVjplDyr85cWL06DyqmysUzJ+f64277JK7kRk1QW8524IB+SyzcePGmuXL7ch37cgjj8zk9qrznQar24BifxzkRyHfcR9+MPu9VFTvcY3C3PR/ysXlV2I7Ut4JgQ8PLs1levOp5lO13xMyjXTItCep2BkdqZ6Dj0Qdx3Eq4J2o4zhOBSqr86ecckomM7iZql5MVZSKHlgGsHMOO1XChQsXZjK9vUynxsBxZrCnueCoo47K5JkzZ2ZyvYXZWHee65BDDsnkRx55JHp8Z8NnSVjvAw/Mc46zPFVnRkaUIxTYlgcddFAms72efvrpTH7uuecymeYDpkRcsiRXCpktn/V+1avyCd6PPpors7GojHKdaOLhAni87y5nGGQGFiAg4sPYfBpkLhC3D3Tn26hHS5rzV/xAaruN1L2fhsz09wzUxxyZTXC9r8brAed/YR48F8Lj18XgfEkaBxlr6untkJvEEFPAR6KO4zgV8E7UcRynAt6JOo7jVKCyTfTkk0/OZNoomWuy3iwgJsF4+OGHM5mzYWJ2Ss4gYhILhsPwen/9a24got2UeS7vuSdPkFgO7+FMHM6a4QqY3WkTLS+P0QpthccdlwfKMAwtFjZUtjNOnZob1mib5DNnaFhsNhhnRdG+TPvoAw/kVja+T0x0w9VcmehGKrY92+vgg/NpPN1qEx0Jma8abKJ7YTPDkvgVMY9nmb6wtW5DKt8RuWtBqwuZQyBjaZHClCXELC2nwRPnGY0ZUcegCFYZUTFbbzHkaTzkiyC7TdRxHKeX4Z2o4zhOBSqr81zJk6rYJZdcksnHHJMP6G+99dbC8VTTqI4x7Oh973tfJlO95GwkqmtLl+ZTKmgKYJKM/fffv+Z2qp9jxzLeo3gu3t8f/vAHNQOsO8N7GMr0ve99L5OZGOayyy7LZIYu3XXXXYVrsI0Z7kTV+6Mf/WgmU4Xv3z/XCdleXBKE5RnOxrAk1oHvTHklWd73N7/5zUyeNWuWmgIuJjsHMvTci6HD74ciXGuW4U7lVTInQZ6DvJ4MJ1o9Dz+YIaSYTjevHjKTFK6HSnF2FQ1CzIfCCCqpaN24FPJXalejSG1LVpfgI1HHcZwKeCfqOI5TgU5b7ZP84z/+YyZ/4hOfKOybO3duJu+3X66w0MNLzzFVPHrwqQbS68wkJZwxQ0871TsmUfnJT35SqOvXv/51dQSdle9w8ODBWXvxmbWXd77znZl86aWXFvZxBhK95IzMYOQDVxGNrdJJs0wsWQ0jBjiDjSaXa6+9tlBXmi7KuUbbQ6flEz0M39dMXrB956EHv5yFlx7wefSwQ8ceh0fD7LGraR3hiVBoKJYceS+K7AaZK3cypU9hKRJJTzBKYLXaB4aDYZvnE3Ucx+kxeCfqOI5TgcrqfCyfY2xlTa74KBWDrqm+cWVNlqEaTu8rA83pmd5tt1yxoPeW6j/zhDLP6AknnFDzHsrXa6+q2Fnq4dChQ7P2Ki/r0RZsO6rmjz32WKEcc7LyGvS8sx25ne1FtZ3B9sxLymdM0w3Pw0kWr30tF5hobPXYGKV3uXPU+WPwff21dpn+EXkD9WJGqT9bOgG+4JGw8DDH5992xQ/OV+BdM/od4QA7IV/pm1CEgQf3QJ4LuYXXlQprinDpkNoLBZXAwwkvuTrvOI7TY/BO1HEcpwKVg+1pDogts0HK87t5PPfRuxxbxiJ2LAOwmeOU54nNr2+UKt7eziKmvrJdYvdKM0lMlooB/YyCoLrN7bH3gyo5TT88lm0ay59Az36ZiiaXdpXfIVZGtuOWtiD4nep8Qb2me36FiuCgFni857WgDPVl5A0teOS31N7OFUSGQKYxifH7LaPxozyEw741q9Q+uqC5YvhI1HEcpwLeiTqO41SgQ1f7bEQFqpeujFBtpLpHlTCmrtGzz3nZPCehN5+e4no0oiJ3NeVn2wpV55hayzI8T7k8TQY8hs88ZnKhp57bqcKvXJnruKNG5T7eeqt6tsKoAqkYddGULI5spxoNXbhg0KB3HmntCkuOSMWJ9Zg7/yKHTzwxLUL8XFgnmAyeRVNMxmfArBNPsD4MeCkH1D9U+9INxVjseCBGZXwk6jiOUwHvRB3HcSrQoep8VRU3pqbFVPjY9eixZUA4V6GkKkq5kQiD8vWahdgEh0Y80/TC8zxUwaW4aYDPjZ50mlB4jZj5hcHzc+bk+eFoRuDKrrFs/uX7aEpilqOI155xEltjE+ap5pf30WWOwPuxUOeXoghXBy0E3jMSHvnslsJ0UIjpmBipX/k+kXm/G7XzduMjUcdxnAp4J+o4jlOBDlXnG6GsYjWiPseCtEkszRpVyNh8eQbhN6qmN6N3vgpMX0fKHm7+jkVHxNo0FgHA8jQf0BTA69Jcw+uWoxN6WxsV+E1ke2k++h6Yj96C7cwqT2PPSMgt7B3o5afrHaYAXKqozjON/mTID6kIVP1+MDc0u2rvI1HHcZwKeCfqOI5TgS5X58ue4pjKFZsXH1MVWT4WnE9VsRH103m5+STWRnyeDHqPBd4TlmFb0xRTDqRvhSaacu6ARiYZ9DqKaytqCHRsGmYQd1/wyDMjfQujBxgEwUeJCfMvwSJUMA7Rgse5/dT/pYI6bzu+MEOX4yNRx3GcCngn6jiOU4EuV+fL6mEsJVqV88bUuFhaNm6Pef9fqZTVYD4r5hyIpcKjxzzmeY/Nr2c6xNiEiJjp5hXL8uJPTnmnR34a5J9BLnjVd4dM/R9B8To2F1/6RS4X4iR4LFX4soUGn3+ze+SJ9xiO4zgV8E7UcRynAk2rzsfUt85Q/3mecib3VzpljzrVcKr6fIZchI4qP+fUU+XnfPkRI7j4eG3owWfgffl9iKU+7NWUMsIzyx3XAOBCchuxat0wriTHFHuvhnwr5HflIt8UZrkvRAzQOkSzgFSYKNAXZolmV+19JOo4jlMB70Qdx3Eq0OX6TtmDGguSj3lvG1H5Y4H6VD95bCzLulNUzaWi95xr0Mfms69Zk+diGz48z6HG9mW6wl122SWTGTwfS4dI9b+cto/XiC3i1/Tp8trLtOLPOTNz+Z+xvfA0oFbD2a6/UJ1HsP0hiNp/BGnxOEW+4HjfBTKHbTygVG4rZwDwGKbzaxJ8JOo4jlMB70Qdx3Eq0GmZ7RulkYXTGlG5YvOyG1ngjNTLlP5KgfPUy+u6x8wmI0eOzGR64WNr2DfiOee1qI7zPGVzA6F6z1R6PXVCRfSJUYXfu7hrw1M4Pp8PoRtRZhTmsy/hwZMhI/C+8IXg0+QXOJJl4P0veOfLnxqD+++FzLXqXZ13HMfpXXgn6jiOU4EuX3e+rMY1Mp+9kfM24sGPEVtkrbfDSASq7QyQHz16dOGY+fPnZzJVaS42t3Bh7tbdeeedMzkWnE9VnXPwOe+e5XmteunuaJbgPHyei3KzZ79fQ7X9YMjPQP670kF/ycUnoKs/jmj7f30xl3/IY6k6YzJ8IQbiuVzkenSFGJdDIbOJXlQR3t/fIscwQL+4kEG34SNRx3GcCngn6jiOUwHvRB3HcSrQ5TOW6oUQxWYXxUKcGglHau+MlNjMlt4IbYtr1+bGJtpHy8+Yv2kv5ayjWKKR2Iwxbo/JrGssVK2cPIa/WQ+2MW2lTd/2x0C+B/LUOsdgRtEtsInuDnskU76sno4fL0BGJFkhuQhcCDzP3SxDIypXI2Xok1Q0qrIeXKaELgvmTu3G1V98JOo4jlMB70Qdx3Eq0CXqPFWxuXPnFvZRPeQMk5gaHgtJiYVHxYglOGn2MJd6MKSHoUJk6NB8wYhY7lQmCpk5c2Zh37p1uW7F43k91mPVqjzBJVVqhlERnpMqP00MvBa3l9uO6vnYsXlSyxUr8ik6sUQoXRLqth/kpyJlToQ8GfJ9kIdB/l3x8L6zc5lzz3jpJyFPnJnLz3NtkUW5WPgyMUOKqUzXsMwDkI+AXA5R4kqgH4f8I8hMhPog5PnqNnwk6jiOUwHvRB3HcSrQtMuDcLZKjJg6H/PeNqKq10to0ezw/mIzkGgyoSmFx1INLnvn2UZUeend5zOk95umBKrOhB553gPPw7pS/S9713ku3gfvIWYm6JIkJfQo7wOZM5CYc5PqNW+VM3+K+WIKK3xSE6ZD/zHIB0J+npPVnsjFgjqPa9MswMlHM3lAC+TFKsL7oKt/I+R9IfM5deNn6yNRx3GcCngn6jiOU4EuUedjyUGkopoV8yjHloaIeepjqhjLxFS9RswIzUpMTY15wnmv9JzTA89kIlJRhY+twkqPNz31seU6uJ15P9lGrOvq1atrli+3Ha/BfbE8pbFIkU6Dr/tekJ+FzM+F6u8hkP+ci4euLF7iSMjLIHP1jechF96UCZBhfeGxtAXQ2lAwAt0EGQlRCsHyksS6M7Fp30gZqvzMRdrF+EjUcRynAt6JOo7jVKBLlgfh9vJyE/SuxtSs2KqPsbyQVA9jKlrMRMBlLnoysZVQ+ZxoPqG3nGVipgCpaAKIPX9emyt/EpanF55B/1THqcKPHz8+Wj8G+nOef0y1j60A22nwEkzAya+Sj59udLjC94SK+/rSJaiRMzadp+W0gsIXTNUb1g2q/zYzl+fi096IC4y7LZcX0WxRTlXwM8hvhUw7BK0sfGbx17TT8ZGo4zhOBbwTdRzHqUCXLA9CVXHp0oJvr6Bi0yu8++65uy0WAB/z8NJkEJsbTVWWaubixeUI4J4DvdmxZ0NVlu0Vmyu+cmXR3UvTBz33kydPzuRRo/KwbqrLsWvHzC98H6jmc/t993ESeRFe44UX8rxusRVmuzyHAiebU2XdBfICyLSGzK0pFj3nkjZAHhwp1wK58GR4AF4Pqvx0kPfbXLsMV/QYPieXX2bcoUr+McgMtueJt0bkLsZHoo7jOBXwTtRxHKcC1pNTvzmO43Q3PhJ1HMepgHeijuM4FfBO1HEcpwLeiTqO41TAO1HHcZwKeCfqOE2AmZ1gZk/j975mNtPM1prZRd1Zt47CzGaY2fu6ux4dTZd3oma2Dv+2m9lG/H5HV9fH6TjM7O1m9mDalovN7GYzO77iOXvlh2dmwcymtP4OIdwVQuDiF5dIuj2EMCyEcEUD5/u+mT2dflPnt1F2JzP7oZmtMbMlZvZR7JuWtuGL6b8/m9m0eufrbszsp+n7tsbMZtd7X8zsfDPbVuqHTkr37Wpm15rZIjNbbWZ/MbOj2rp+l3eiIYShrf+UJIQ5C9uyPC5m1uXrP5Vphjr0FNIP8ZuSvixprKSJkr4j6exurFbT0Y53apKkx9tx6kckfUjSww2UvUzJqk6TJJ0s6RIza00AtUjSmyWNVrJE0w2SrmtHPbqDr0iaHEIYLukNkr5oZq+qU/5e9kMhhBnp9qFKFnh+lZL7v0rS781saOQ8CSGEbvsnaZ6kU1P5JEkLlaw4vUTS1UqW3fqmkoZdlMo7peXPl3R36XxB0pRUPl3J8lprJb0g6d9Q7kxJM5VMG75H0sGlOn1c0iwls3n7decz6gn/lEyhXifp3Mj+eu04StKNSvKcv5jK49N9X1IynXtTev5vd/N9TpD0q7SuK1kfSe9VkqDuRUl/kDSp9F5+WMnSanMl3ZluW5/e11tb3/+0/G2l+57ajjreLen8NsoskvR3+P0FSdfVKNcvrfeGdlz/WCUd0er0/2Oxb4aSDu9+JVPnfytpdLpvoKSfps+1JT127A600b5K1gB4S2T/y/qNNs63RtKr6pbp5pdynoqd6FZJ/5F+dIMkfV7SXyXtqiQtwz2SvhB7GCp2ooslnZDKoyQdlsqHKkn3cJSShQfek9ZjJ9RpZvrBDOrO59NT/ilJY7lVkT84bbTjzpLepCTdxTBJ/yfpNzh2hqT3NcE99lUy2vuGpCHpR398uu9sJYt67J92PJ+WdE/pvfyTktHNoPK7ivd/Yey+lfxx+UQD9azbiabfQmAHpWTk+WipXEvaptslfbrBZzRayR+Rd6XP4bz09864pxeULCo6RNIvJf003fdBSb9L34O+SkaDw9N9n5B0YxvX/o6SfCtByWh8aKTc+Ur+eK2QNFvSZ+q8t9OV/CEbUffa3fxizlOxE31J0kDsf07S6fj9Oknz8DDqdaLPpw0zvFTmf5R+wNj2tKQTUaf3dudz6Wn/JL1D0pI6+6PtWKPsdEkv4nehM+nGezxGyQj0ZR+cpJsl/SN+90k/6Enp7yDplNIx7epE21HPtjrRCem1+Z29tlZ7pB3dhySd0eC13yXp/tK2e1vrk97T5dg3Lf3m+yoZyRe0wh24976SjlfyR6x/pMxekvZM2+ggJdrqJ2uUGy7p0Vr7yv+azTu/PITA5bvGSZqP3/NVXIm7Hm9SotLPN7M7zOyYdPskSRebWUvrPyUvFs+7QE57WClpTB17X7QdzWywmX3PzOab2Rolqu5IM+tb4zzdyQRJ80MItZKuTZL0X3ifVilJ2rYHyjTLO9WaR3A4tg1XMWOdJCmEsF7SdyX9xMx2beDc5XZW+jv2HOYryVU/Ron57g+SrksdO181s3atFhhC2BZCuFvSeEn/FCkzJ4QwN4SwPYTwqBIt6c0sY2aDlIyK/xpC+Epb1222TrScDWWRkhe0lYnpNikZkmcZD81st8KJQngghHC2EhXyN5J+nu5aIOlLIYSR+Dc4hHBtnXo49blXif34nMj+eu14sRI71lEhcQy8Ot3emjmyWdpigaSJkT8UCyR9sPRODQoh3IMyTXEfIYQXlZi6DsHmQxR3YvVR8p3tEdlPyu0sJW39An5PKO3bImlFCGFLCOFzIYRpSuyqZ0p6dwPXrEU/SXs3WDYIWUrNbCcl/cVCJZpsmzRbJ1rmWkmfNrNdzGyMpH9XYnyWEvvUAWY23cwGKvE4SpLMbICZvcPMRoQQtigxDrcuAnSlpAvM7ChLGGJmZ5jZsC67q15GCGG1krb5bzM7Jx1d9jez08zsq6rfjsOUpN1tMbPRkj5bOv1SFRcU7i7uV9L5XJ6+MwPN7Lh033clfdLMDpAkMxthZue2cb4Ova/0nR+opEPon9Yv9n3/REl7jDKz/SS9X9KP0/O81swONbO+ZjZc0n8qsWs+me4/38zmRc57k6SpaahbPzN7qxKV/UaUeWcaRjVYySjwFyGEbWZ2spkdlGoga5R0rttfdoWX3/euZvY2Mxua1vl1Smyxt0bKn2ZmY1N5PyU20d+mv/tL+oWS9/E9IYQ2ry+p6WyiC0v7B0q6QsnLuziVacv5lBID8QJJ71RqZ5I0QNItShp/jRJP3/E47vXptpb0vP8naVi5Tv6v3e35DiXroa1XEmHxeyWjimg7KlEBZyhRM2cr+esflNoeldgiZ6dteUU3399EJaOUlel7dwX2vUuJDW1N+j7+EPsK9s902wXps2iR9Jby+6+XO5ZulnRpnbrNSK/DfyehXR5H2Z0k/TCt61JJH8W+cyU9lbbH8rQNGb3yGUk/q1OP4yU9pMQ7/1Dpu5uhonf+d5LGpPvOU+KbWJ/W6Qq8A5dKujlyvV0k3ZE+xzVpG7y/1GbrJE1Mf38tPf96SXOUdOT9030nps9tQ3pM678T6r0Xnk/UcZyGMbM/SvqXEMKTbRZ+heCdqOM4TgWa3SbqOI7T1Hgn6jiOUwHvRB3HcSrgnajjOE4F6maUMbNO9zqZZXGuopPrNa95TSZfdFGeTnHmzJmZvNtueXz9s88+m8lDh+ZJV0aNGpXJW7ZsyeS99spD9N74xjfuSNV3mBCCtV2q/XRFe8XYddd8QsvnP//5TH7kkUcy+bjjjsvkJ5/MnbuDBg3K5GHD8nDdxx/P47/HjBmTyV/+8pc7oMaN05PbixXnxd4K+SnIDIx8dCx+rIf8Es4P+QwU2R3ylW3WsmPprPaK4SNRx3GcCngn6jiOU4FuTzocU+c/97nPZTLVwDe84Q01z7NmzZpMHjw4m1Kvfv3yW9ywYUPNMmeeeWYm33gjZ6g5jfKOd+SLErz2ta/N5FNOOSWTp0yZovZwxx13ZPLy5cszefjwPHcG2915ORwlbYNM1Xsp5AGQH+UOzpxfkYs0EYyHzOUMRkP+j0g9ezI+EnUcx6mAd6KO4zgV6HZ1fvv22olSDjkkz9S1atWqTF6xItclhgwZksl9++bpJ1euXJnJW7fm6R9pOqBqud9++2Wyq/M7BqMpaJb529/+lsmNqPPr1q3L5BdeyDOo7b577u/dZ599Mvmhhx5qf2VfQWyLbKdHnglAC6sKHg4ZXnixGVfnYp+ZufwsiuxUr4K9AB+JOo7jVMA7UcdxnAp0uzofgwHzVOHpme3TJ/8bsHnz5kymar/TTjvVLEMmTJhQc7vTOK973esy+fnnn8/k8ePH1yoehe3Odtl333xJ9le/+tWZ7Op8iXKYeSSc/2uQx0BmCnptgMzFRKjaYxjGlmBs/ij1bnwk6jiOUwHvRB3HcSrQVOr82LFja27nnHd6fqnOU4WnR57efx7LIG3O+3aK0BMuSc8880wmDxw4MJP5/PnMaX6Jcf/992fykUcemclsx/XrcwWRqr1T4nWl37fkIo1WXHKT2vnc2HlR6JCHc/mRvLkKgfovNnLOXoKPRB3HcSrgnajjOE4FmkqdP/DAA2tupzrPtGnbtm2rKVPNZ4A9VU566plmzSmy8847F35TnT/66KNrHsPJEWyvl17KdUK2BYPqGWxPdb5///6ZfOihh2YycyMwH0L5XLFJHb2OqaXfUOcXRw4ZFzvXRsi55UbHYvMji3KZa47PgryaARqYd6/yZ8e5+lvUY/CRqOM4TgW8E3Ucx6lAU6nznC9P1W/Tpk2ZTJWNgfT0AlOdpEeeqj2PpefXKT7juXPjvtXDDjssk5mqbunSXC9jwDxNAZwLT/muu+7KZKrqbDu2F9uRZhypmCV/9erV6rVQLb49XmwrAvEnIgif2vYyyIeh6Z+DDOe8zluYy2uxnYaVwpNnsEa592E6/OfVY/CRqOM4TgW8E3Ucx6lAU6nzRxxxRCbTm0r1kh7bESNGZPLDD+dKxvTp0zP5xRfzsF965HnOBQsYevzKhOoyPeH1TB177713JjP9ID3vLS0tmcyFBa+55ppMZoD94sW5D5mRATTp0CxAsw9Ve6n4fnBiAM0NPRYOfwZBXl4umLM3VHgG3sc0bLb82yLbj4DMufOcorG4BT8YJFGeh0G7wkjIs9TU+EjUcRynAt6JOo7jVMA7UcdxnAo0lU10//33z2TOUqJ9lPkmaT/j7JlYkhLKDJ9hSNQrlZEjR2YybYvM5SoVn+HUqfn0GNomCW3Pzz6bLxpx0UUXZfJTT+WLVXDJl9gstCVLlmQybeRsU6loD+91M5YmQaZt8elSuf4QI7OAuIQInyDT8nwP8umQmWiEYU19IReMqMx3OlBF5kHeqh6Dj0Qdx3Eq4J2o4zhOBZpKnWdISiwnKNX5X/3qV22ek+E2VA/JgAEDam5/pcJ2KD8zzvxhHtYNG/K1JPjMqc7feeedNa/HRCFsX5pZeH6q/AzHKoc4ccYSk5yw3suWLVOPhGoxVfuyVQXRe2ugzu+FIswzwmipWA4QTiyiOj8SciG3CPV81nuoivDED0A+APLjkUp1Iz4SdRzHqYB3oo7jOBVoKnU+ph7S206uvfbamts5M2n06NGZzFk1pJyH8pUITSaMeuBMJqnYFuPG5ZkomaiEXnLKt956a81rMxIjljSE9eDMp3LSEcKkNDRLMJKA5429Z00JrSzMCFJ+HLglrnW7DjI96WztZ1UbOs6p/lO1L8RCMGEpZ1SV68oZSzRLsLI8pkkCLnwk6jiOUwHvRB3HcSrQVOo81Wp6bMtB1K3cfnvt5In33ntvJh9zzDGZTK8xian5rySYaITtQNVZKuYNZYIQerlpTqEa/cQTT2Qylw2ZPXt2Jk+alLuaWQ+Wp6mHHnmWKZdbuzbPdsn3oMeq88yhwhVcDi6VezIXVz6Xy0tQhJ70UTyUQ6w8YEPPQG+ng515Q6naazRk2hR4Mamo6mPZETHogp9wiMhdjI9EHcdxKuCdqOM4TgWaSp2PwYBqBuFTbSTz5s3L5OOPPz6Ty57mVnr10hENwnybkydPzuRyPtHYM6TqzdyfNMVQXeZ25vfcd999MzmW92DNmjWZTHW+bPbZuDEPI2e9GbFBNZ8RCrF3q2kYCflEyOW5A7UtWAXNeQjkNSxEXR0qNTNNbIBMZ3lh6jvrwHn+xbkRRRsAh3d7Q6aaz4sUKt61+EjUcRynAt6JOo7jVKBp1XmqflTnn3vuuVrFCyxcmC9BSDWwR3lfuxh62mkOYcC6VAyGJ5zzTrWYS6/wXFT/6UVnmdiSI5w7TzW9rM6zHE0ALEeVv0cxFfIdkMeXynE+eh4EoReRLmIIAtsLmRJ4LkQAPAvXPufgk4IxhDn1GDhfDKYopO2Leuep8jfJ5+wjUcdxnAp4J+o4jlOBplXn6YWnWvbYY4+1eexNN92UyZdcckkm15tn/UqHXngG2HPlVEmaM2dOm+eiqs7gfOZGoInmrrvuyuRzzz03kxkxwEB6vg9MY1huX16D8N3i8ZzD3/SmH3rhp0N+d6ncbZCp9iOr/Bao84WFNZmCDukltiKAfwsWPmDqvMJaEbtAZr3LvQ/Vez5+2gYYSkBLTO0sl12C9yqO4zgV8E7UcRynAk2rzlM1oweWKddiPPLII5lMdS2m3pUDynszsbniDEAfNSqf1FzObF/OHt8KnzM96QykHz8+d/dSpWYZLphHjzpVe9aJnnZGCEjFoP8xY/IZ4rwH1pvnja2C0OXEUr8xAJ0u8nJm+9rBFAV1fi0D1TnP/SjImyAfkosrkd2QMfWF6SsM8ODidMW0DEXPO6MPeDzvh/YDV+cdx3F6Jt6JOo7jVKCp1HkGydPDy+DtRYsWqS2oKpJYKrxXkjof8zpTrX366Xzx8r32KoZTx9ISUt2mGt3S0pLJ9LBTXeZ2mnF4LZohmOuA5cvz3XkM58jzGfDd4rmaRp2PBQnQcnED5JNL5ag+HwE5/9QKTu5oXjyaCRDAH1sevpB0ns3CYVs5ZQX3MVcfT0YVPpIXoKvxkajjOE4FvBN1HMepQFOp8/TS7r137n6kGj516lS1BRciIzEV7ZW0UB0901R/qSLvsccemUw1XSqaSijH0twdcEAesf3ss/nSZ2yj2MJxjKaIpdfjsVTNpWJQPu815qnntRl4363QM031F+vJ60jI5Wzx9Krz00EKisDshvwUJkNeCxne+W0/zWUaxUZCXsEdlMufI+fY83qsNzLsF4aAzMnXxfhI1HEcpwLeiTqO41SgqdT5Bx54IJP333//TKYqdsghh2hHiQWKN30W8w6EKjLvm55pqvN33MEJ10WTyD333JPJnGPPc+233341y1M9j6n2VNtZV6bIoxmh3I78zXtiQP+KFfnk76bxyBOq1wyK5/DncMhfLB1PqwQC6QdicvsmzlmnyWBfyLw20tkxSIDGlEKWO3ra+YjL3nn+fhXkSZCfhkxTRTfiI1HHcZwKeCfqOI5TgaZS5++8885M/od/+IdMpqf0sMMOa9c5qaLFgu3LXt3eDD3QfB58TlRxGSwvFTPgX3vttZnMaAp69LmOPLfz2py3H8tUzwz0rBO3l9ed57nGjh2byatW5bosj28aj3wMpn5gVanizi8dsw/kh3JxMjY/hYj5vkhNsY3z6GkJw7x9atT8igpBAgjsLwTt0wMvSYwSOBgyF7Ngjr0mWZTAR6KO4zgV8E7UcRynAk2lzse8twzqXrasvLB2fThnOrZm+isp4z0901RlY1nny3PtmZ5uxowZmfzP//zPNY/h86fJgNfg8+eidYTvAM0v9bzzvB7vlWYCRmw0pTq/J2SmimPWeVoxygEGL0CG+swY/v64bX4J26h6M0oAvUZsKnthikZM5y+vFc/rUW3n/bHirs47juP0fLwTdRzHqUBTqfPz5+euRaqNVLno4WWattgCalTRYmncYl773gjVa6rI9MjTZFJeDeDFF3Odkl7yJUvyiGo+T6re9Oxzrj696izP87CuVNO5vazOx+bz87yUWSa2CkKXw8yPVIvpkX8Ccnkt93mQERmPZeQ1oXYRzXoePzh/HQdTA+8bkQvz5TlsK3vnaYrgfQyIyLQZdGP6Cx+JOo7jVMA7UcdxnAp4J+o4jlOBprKJEtpBabfi9kZsoosXL87kyZMnZzJnrfQWmyifDRN5cOkP2h9p06Stk+FlPFYq2gopM0dnrL04M4lLstCWSdssw7FYV9pE163Ls2GUbd78zfbm/THnKMOrYuFwHQpXrmRk1xDInDU0DzIXvWXoE4+VirZF7FsMeyTvtLDcB2c/HQQZx7LazBNSGJ3R9km7bjFVbfH3M5CZmGQXyCshd+Mn7CNRx3GcCngn6jiOU4FuV+epNjEk5de//nUmv/3tb69Z/vjjj8/kP//5zzXPH1vJk+ehKtuTofrK0J9Ro/J0EAxx4kwhbicMNStfg2rxLbfcksnnnntuJjNkiclI5s7N9VG2O1VqhrNR5eeKr7GlQsq/Y6uR0sTAMl2SW5SqNqvOBVYXQ2bUVWzR24Wl30wcArWYbzyrUQjsugfyayFD5+d8tpGQmYCkD16t7YyhKr9yyFNaWAaE6vzekTK1VwTqEnwk6jiOUwHvRB3HcSrQtOr8b3/720x+97vfncmcgfSmN70pky+77LKa56e6x/PXS1zRU6F6Tg851dRYVEKjOVVpJiC33nprJp9xxhmZzOfPJV/+9Kc/ZTI97zw/25rbaaJhvcuJZKjOM0qAJoqYR76ceKVT4NdHPZpqKnNpMlCiwVwpffFq00BBK8GrITPvh34F+d8gYyYT84HQcsDboblg/bZIISmuzjOJCj3ybO5uTAnsI1HHcZwKeCfqOI5TgW5X56mCUTW7+eabM5nec6pljaigjz32WCYfdFAeMcz8krvvvns7atwzYLIPqq/Dh+cKWEcujcHoCCYj4SqbVMNpVli4MHcpP/NMHmV96KGHZjLV66FDcxdvTP2Xil54mgyY/GSXXfLobZo3uiS3KKPcp0Cm+roHZLrUawedvAx+4NSkX0Jw+lDsKDj9eT2aFe7LRcZu7Aa5b2T7c8wBWs4H2gJ5HmQmQtkfMs0b3Zhb1EeijuM4FfBO1HEcpwLdrs43EtT8/PP5eP7oo4/OZM57PvbYYzOZy4zEvNSxed89GZo3qL7SZFJv6Y8q8Fw0v+yzT77cJOfCxyIGYkuIcM7/iBF03eaUg+3pbafaP2xYPmk9FpnRJUvG0GJAlZW6MIPTdyD+PxqDjnPRU8+p+kOxEs+6H2LHCpTBZmrX9NRHU32uK/3mfVM9Hwe5vKRIrWO7GB+JOo7jVMA7UcdxnAp0uzrfiEp55ZVXZvJTTz2Vydddd10mU4UnV199dSZTDWQKtbvuuquxyjY5VE0Z5E4Vmc+7s+aHX3PNNZnMFIVPP52vaUFvPr3lN9xwQ836UX7wwQdrXrd8PzTlsL1p9mCwfZev+sq540wDx/kMVHl3YH54IwYbrp/LTHrrXoUfj0BekIu0QjB7HYP2o5kpypYU2gCWQmazMtievVcXzI2I4SNRx3GcCngn6jiOUwHrkjnCjuM4vRQfiTqO41TAO1HHcZwKeCfqOI5TAe9EHcdxKuCdqOM4TgWavhM1s/PN7G78DmY2pd4xTvNQbr8a+282s/d0ZZ2aETM7wcyexu99zWymma01s4u6s24dhZnNM7NTu7seHU2XdqLpQ9xoZuvMbKmZ/djMhrZ9pNPsmNnxZnaPma02s1Vm9hczO6Kt40IIp4UQrqpz3rqdcE+lPBgIIdwVQtgXRS6RdHsIYVgI4YoGzjfdzB4ysw3p/9PrlP2pmS02szVmNtvM3od9k9O6rcO/z+zgbXYJZvYFM3vUzLaa2WUNlD/MzO5EP/Qv2DfdzO5K3+OFjdx7d4xEzwohDJV0mKTDJX26G+rQMGbW7VNjmx0zGy7pRknfUpIIaA9Jn9PLJ/a197y97tm3454mSXq8wXMOkPRbST9VslrxVZJ+m26vxVckTQ4hDJf0BklfNLNXlcqMDCEMTf99ocE6dxfPKvmj8/u2CprZGEm3SPqepJ2VpMP+I4pcI+lOJe/xiZI+ZGZvqHfOblPnQwgvSLpZ0oHpX77s5TKzGfzrGMPMRpjZT8xsuZnNN7NPm1kfM9vJzFrM7ECU3SUdBe+a/j4zVZda0hHUwSg7z8w+bmazJK3vjR9zBzNVkkII14YQtoUQNoYQ/hhCmNVawMy+ZmYvmtlcMzsN27O2TkedfzGzb5jZSknXS/qupGPSUUNL195WETObYGa/St+3lWb2bex7r5k9md7jH8xsEvYFM/uwmT0j6RkzuzPd9Uh6X281s5PMbGFa/jZJJ0v6drp/ahtVO0nJTPJvhhA2pyNXk3RKrcIhhMdDCK1/4EL6b+9aZduLmb3BzB5Pv6sZZrZ/qcgRZvZE+px+ZGYD0+PGmNmN6XGr0tFgQ/1TCOGqEMLNevlK9rX4qKQ/hBB+lj6rtSGEJ7F/sqSfpe/xc5LulnRAvRN2WydqZhMkna46+Qka4FtK1gXcS8lfjXdL+of0BfmVpPNQ9i2S7gghLDOzQyX9UNIHlfw1+p6kG8yMKRDOk3SGkr/ItZe4dFqZLWmbmV1lZqeZ2ajS/qMkPS1pjKSvSvqBmVn5JCg7R9JYSe+UdIGke9MR0chOqX0DmFlfJaPt+Uo+tD0kXZfuO1vSpZL+XtIuku6SdG3pFOcoubdpIYTWBTYPSe/rehYMIZySnuPCdP/stIP5RKR6B0iaFYrTD2epzsdvZt8xsw2SnlKSUvSmUpH5qTr7o3T01iZpZ3+tpI8oeQ43SfpdaUT8DkmvU9JpT1WuiV4saWF63FglzzOgrt9ppA4NcLSkVenAaZmZ/c7MJmL/NyW928z6m9m+ko6R9OdaJ2qlOzrR36Qjirsl3SHpyztykvSlfpukT6Z/TeZJ+rqkd6VFrkn3t/L2dJskfUDS90II96V/ca5SonoejfJXhBAWhBC6cfWWnkEIYY2k45W89FdKWm5mN5jZ2LTI/BDClSGEbUpUzd2VfCi1WBRC+FYIYWuTPfsjlaQH/lgIYX0IYVMIodVWe4Gkr4QQnkz/4H5Z0nSORtP9q3b0nkIIZ4YQLo/sHippdWnbaknDapRtPd+H0v0nKBlwtI5MV0g6Qok54VVpmZ81WM23Svp9COFPIYQtkr6mZMXkY1Hm2+l3tUrSl5QPdLYoeS8mhRC2pDbi0FrXtL4dwXhJ75H0L5ImSpqr4h+8GyW9WUla6Kck/SCE8EC9E3ZHJ3pOCGFkCGFS+mB29EMZo2Tl6vnYNl/50l63SxpsZkeZ2WRJ0yX9Ot03SdLFqerQknbqE1TMoY2EX05bpB3I+SGE8ZIOVPIsv5nuXoJyrbnnYg7FZn3uE5T8MaillUyS9F94l1YpUae5zFxn3tc6FZeAV/q7rnqbDiDuVtKx/FO6bV0I4cH0j9hSSRdK+jszi3bIYJzwPYYQtiu579hzmK/8m/t/SmybfzSzOXVG3VXZKOnXIYQHQgiblNjuj01Ng6OV2Es/ryQ54QRJrzOzuh14M4Q4ta5byFUEdqtVsMQKJX+9+Nd+otK1EtNRz8+V/KU7T9KNIYTWl2qBpC+lnXnrv8EhBP5F8swsO0gI4SlJP1bSmbb78DZ+dxcLJE2M2McXSPpg6X0aFEJgktvOvI/HJR1cMpEcrAYdU0rsqTGbaGu9G+krFgnfY1qfCSquXzoB8sT0GKXa5MUhhL2UOLs+amavaaz67WKWim1BeS9J20IIP0n/iCxUYrI5vd4Ju70TDSEsV/KQ32lmfc3svWrAyI1O8ktmNixVnT6qxEPZyjVKVIx3KFflpUTlvCAdpZqZDTGzMxr8a+uUMLP9zOxiMxuf/p6g5A/XXzvg9Esljbe4p7mruF+J7fDy9H0ZaGbHpfu+K+mTZnaAlDk8z23jfEuVfLQdwQwlqYsvssSpemG6/bZyQTPb1czeZmZD0+/tdUra6tZ0/1GWxKj2MbOdJV0haUYIYXW6/zIzmxGpx88lnWFmrzGz/krsnJsl8Y/Jh81sfDrq+5QS52Gro3dK2vGuTu+n7TXRk2P7pw6qPpL6pW0TW3XpR5LeaEkoU39Jn5F0d3p/s5PT2dvT+99NSf8xK3IuSU3Qiaa8X9LHlOStPkDFh16Pf1Yykp2jxMZ6jRKHkSQphHBfun+ckkiA1u0Pptf8thLH1rOSzq94D69k1ipxmtxnZuuVdJ6PKfmIqnKbkhHVEjNb0VbhziL9o32WkpCY55U4Qd6a7vu1pP+QdJ2ZrVFy76dFTtXKZZKuSk0Ab2nr+pZMSrg0UreXlDiu3q1k9fb3KjGbvZQee6mZtb7/QYnqvlDJu/81SR8JIbQuKbCXEpV2bXofm1V00E6Q9JdIPZ5W4gz8lhJN8SwlIY3MyX+NkpCiOUpWs/9iun0fJQ6cdZLulfSdEMLtaf2/a2bfjT8dXalETT9PSce8UalvxJJJDNn6ACGE25Q4rX6vJKn/FCX+klbb/t9L+tf02cxMn0FrHWvi+UQdx2kYM5sp6TUhhJVtlX2l4J2o4zhOBZpFnXccx+mReCfqOI5TAe9EHcdxKuCdqOM4TgXqJtYws27zOg0blodsHnnkkZl86623tus8hx12WCavW5dFOmj27NkValeNEEJs3nglYu0Vm6bep0/+N3Tbtm01y++I4/Gggw7K5EcffbRdx+65556ZvHTp0kzesGFDreINM3RoPkFqy5Ytmbx1az4BKXav27Zt6/z24hU4tOF2ZnZYD5kRkdvUEMy5x+lELwssbYPDIE+G/Kt2nudl7AN5TUSORJGGTZ3zfcXwkajjOE4FvBN1HMepQN040c5Q5wcOHFj4/ZGPfCSTzzsvnxgxalSeTW2XXXbJZKp1o0ePbvN6mzZtyuSNG/NcJ1Rf77jjjkz+3//930y+5ZZb2jz/jtDV6nwjsF22b8/1pJdeeqlQ7t3vfncmn3TSSTWPP+qoozJ55co8Jvvwww+vee0XXsinVlPVnjFjRiZv3pznd541K5+FxzaaO3duzfNLRfPQ2rV5Xo5+/dpOFbtly5aubS8ObWITH5ldAk2066pisaMgnwF5PGROBeLE9v+JXPrvITN70M8hM7vMA5EyX4ucX5I0DfITkRPzOeFJhjWuzjuO4/QYvBN1HMepQJeo8//xH/+RyR/4wAcK+6hmUd2mTBVv0KBBmTxgQJ7Yh55mqqBU/1lmp51yVyfP2bdv7uq89957C3V99atfrY6g2dX5K67I10V717veVShHM8iCBXlqyMWLF2fyhAm5UkhP/1571U5a9MADucLHenD7iBEjMnnMmDzROk09K1YU85PQ3BCjf//+NetKk0aXqPONXIFlmNKauvnC4iG75s0ivr2HQmbK+N0hP7gnfsBk8DEktrsPRZieH5cVjSz8or5ZrKoaWj5iJGRGJaB+rs47juP0ILwTdRzHqUCnrWJJtf2SSy7J5CVLlhTKrV+fRw3TtEDViioXve2UeSzlmPeVxzIIn+rqscceWzjmd7/7XSafddZZNc/bk6B548Mf/nAmv+998YVWGZxOM8vw4fnqFHzmgwdzwYLa8B3Ybbfc7czAe6rz5QiPVsrmlvvuy5VNRgwQqu005XQ5jRhimJZ6BGS6v19XPGQZvNzPYZ4KY9ap+z44BD/oIcej2Q51nqnzr4T8N8jPQKY3f+sgFeHnFptTw2ARHt+lCnwRH4k6juNUwDtRx3GcCnSad57znql+UXWWiiolVTny4ov50vQMuqZqOWRIrofweqtW5dHHsbni9NTTjFAONOf86733zpeBKnuF26IZvfOMhuDzqAdVYT7P1avz1Xv5zNlGvAaf3zPP5MpfzLwzefLkTKaph+0jFd8DmhVoyiE0Q/B+tm/f3nTtpYMgc758eXUyvMID/wC5dhFtoJlgOmR8tns9lMvHowjfGn7lv4PMKf+hPPcC6RH2RIB9YQoFW4Kmh7xbUHjJvfOO4zg9Bu9EHcdxKtBp3nl6U6mCU72Tiir8d76Th/1+//vfz+SHHsr1B3r3x4/Po4w5H/r555/P5F133TWTqZ7vvnseVsy521T16HGWikH5DBxvrzrfjFB1pipbTkHHyRHf+ta3Mvkb3/hGJs+bNy+TGYQfy3Uwf/78mmX4vCdOnJjJy5cvz2R69svtRdjesTn2NA/F0gc2C32RYXDbZOx4rFQQt0oVnlr/Q/RyUw+/AzJy5zGGgQvKM+nhMtZhJOQtkOmqL52Mc/gLrUUDCOvajYEVPhJ1HMepgHeijuM4Feg0dZ7eV6rI9dSkSy+9NJPp4WUQNFU8pko7+eSTa57ziSdyN9/++++fyVT9Lrrookz+4he/mMlUG6WiKeL443O/5P3331/z2j0JqvONBqB/4QtfyGRGUBDObX/yyScz+YADDqhZ/rHHcn2UKjyf/Wc/+9maMt8ZqZhb4Ygjjsjkeinzah3bjHCO+0KqyEPKJXNasO8heLMLajUD7Jny/k+5yOD5OZAZJMDM+U9zUjzd84tKFUTQxK5qJ21nxew0fCTqOI5TAe9EHcdxKtChwfZUgeiRp6pXVudHjhyZyTfccEMmn3322ZkcqyPP9fnPfz6T16zJZwb/6U+5HkLP77Jluf+QXnsuYMes7FLRM3399XniL2Z7b4RmDLYvq8KtMEBeKqrVt99+eya/6U1vymROcCCM2Pjc5z5XszzzE0yZMiWT+Q4xGmLmzJmZTE+9VAyw//rXv57JzOUQo/QuN0V7UWPltJQn6F2fVDroKcjUsZnSgBPdyX6QqaszYIM575iegEH7dNvTnc90fqXzvj4PtlFD60vg4YSVHmzvOI7TY/BO1HEcpwLeiTqO41SgQ0Ocxo0bV3M7Q2YYolRmjz32iO5r5dxzz625/eqrr85kJtNgiM4jjzySyZzBUk6K0gj77LNPu49pNpigg/ZlztwpzzAjbK9YOYaPsS3YXpxtRjvmH//4x0xmuFM5J20rfM+k4j0xvK2ncgTk57gjZq+sR+2UrMUlQfmY+YnwegdCrh3l9vKZSa2U88CgN1qjduL5RB3HcXom3ok6juNUoEPVec5OicH8j1JxiYlG1MM77rij5vZbbskDIZgchGFKp59+eiYzPIdqPlX7ch2o5sZyn3YnfLZ8rjF23nnnTI7lVK3H2LF5jEpshg9nlbHM73//+0zms2Q42xvf+MZM/s1vfpPJXGWU1FuKhPlfG6GeGaPDGAm5pe3ifMKF4LtRkMuRagw1oo48UbWhqs7zMqMI1XxmCuGqo0yEcgrkmZDLvQ8i1ObHTAMxunGCmY9EHcdxKuCdqOM4TgU6VJ2PedfrqYfMV0m1jp5WHr/vvvm0i8svvzyTY+oak17st18+BWPSpHxqx4c+9KFMPuaYYzK5PPOGM5saiSToauj9bkSd5z3QFFBeFiUGZyAxImLUqFwPPPDA3H37iU98IpPZFmxr5o7lap9MWPJP//RPmXzhhRdG68f7oImnEboknyitDy1tF+f0poLWvlVxqG5TxWaGj0Mg05OOJToKs4sYYMPZSFyyhJ/jUsjPQq6dg0ZS0WLQEJ2WSqltfCTqOI5TAe9EHcdxKtAl3vl6+Sm5wiI941/60pcymarm3/3d32XyIYfkegjVRiYKodpI9Z8JRKZPn16z3uW68j7KUQbNQL3cn61QTWWCD0I1uJyAJFbuy1/+cs3tJ510UiZzggLNL/Tac8mXT33qU5l84403ZnIsFymjJ6SiSYPPhs+A0QCMUKB5otOIzzvJQZM+Bs95YVoB864U5xsU9zGDCYdP83LR8kAVTUaRhUituzO2swNZ+CR+nA55tmqzsvQbAf2FfKl8rRk9QBND7YCNLsFHoo7jOBXwTtRxHKcCHarOcz46oRpcDmKmOs+cllwqhLDM0qW522/atGm1ihfmWdPcwCVLCNW7euo8YTmulNnVNBIgTlU2NmGgrBbHYP7OCy64oOZ25gFdtChfD4JqO58ZV2plBMUzz3BRitqUnz3bkvfEd44qP7czH26n0UiAOKxGfWKvFgMxymXW1S7XDzlE90QRGqn4tjO1KIMKaPRowbXW/bxmTYurcpbVefRGBSNSTJ2vsxRKV+IjUcdxnAp4J+o4jlOBLp87Xw7kvvXWWzP51a9+dSYvXLgwk6mm0ZNL9Yvp1Ai96FT/6YnlsTQXlL325eVCWpk8eXImP/fcczXLdCexwPFYOj9OgCjz5z//OZMPP/zwTH7qqXwdCnq2ee2hQ4dmcmx1ULbL4sX52hM8lrC9GJwvFduLKRjZXjQT8D3ju9Vp1LYORb/KOcPwA6/7BKi4CzjfXSqo8MNwDKe509vOSzBGnoEEfJt4C8yuR2PIFs5zwIyBwaVFVw11bTvOpHSREdFSnY6PRB3HcSrgnajjOE4FOlRn4cqdhKoY1XRJuuqqqzKZqepiKiU90FQVY+oXPbQsQ7WRntsf/ehHmRwLwi8zZsyYTO5OdT7mUeYzoBxrL05WmDNnTmHf97///UxmID3bginp+GxpWmGkAwP6GTXB8pR5D7/85S8z+V//9V8LdaXnnWag2H3zvF0yd35FZDuDI6gvR7z5dFj3KVlJYncxMnY8ZH6B9NrPg8z4DgYJsKpbWvBjeC6W5xrsBJmmgQGwABaMgY0FkXQ6PhJ1HMepgHeijuM4FehQdX706HxyLlUjqnfLly8vHBPz0saCoHneRogFz3M7Vb377ruvoXPRA90lWdAbIDYZIAbVWnqmqV4zlaBU9JjHgta5AB6958ykHyu/bFmeQp0qPNV8mhuYOf+jH/1ooa40JVCmqh6L9mgklWBlGlFH2aTQZQdGipTjz0dCpiGNXxHjWpgV797Ieem1PxlybC279fw8XsjF8u3Twc5UfwWTBEMJWKnum+PiI1HHcZwqeCfqOI5TgU7zztNTTHWtvMZ7bD3wmFeXNKLax9KexbzU9c7Jc1GFp3e+O6G5opH576w31WW2F+fBS8WUg4TmAEY+0MRANZyB8MyQT/WaZoWYN79ehAbbiPsaaa8u8c7v1HaRAlBf+yH1Q1T1VXFueyxIviVSpVVIhXH4YuyYjmvPzOXnMCTblRfgAnloog0li0lD8fK8CX6qDUXndw4+EnUcx6mAd6KO4zgV6FB1Pub9Jk8//XThd2yBOR5Ptay9AdEx7zzNDVQn6R0uE8uO3kjOgK6gvWn4OJ+cKjjvs5yCLpYNv6WlJZN33TVfBY1tF8uST1Wb98C2i00kWLEij1gvvw/Dh+eR3bw/LtAXi6zoEnW+vdn2kJl+HaPO4V4vf9BUz6lh0yjD6SGFKuWZCNWf6jxOyiiBQbhA4etnXUfm4pbS4gHPoyl2wrk2Myqflj2q8N04HPSRqOM4TgW8E3Ucx6lAh6rzMbWMzJ5dXLWK6e9i5yJUs2Ke91h5qm4x7zXn9pfn+TNYnMTStHU17VVBqeLGji2r80cffXQmM60hnyc9/bEgd7Yvy3BiRiPp6F54IY/e5kQAqWhWoIli1KhyvrgEvkPtnbjQabBZqNZG0uKVvzoezrd3HGSuRzGSB+OTKiSaRIANYucLc+ejyRTZpANL+/B7s0XKcTsv2I3z6H0k6jiOUwHvRB3HcSrQoeo81biYOl9Wk7guPOcrV5mPHvPm89qx+tH7zEXupOLCblRlqYJ2JzEVlGpxTG2PrVlfbodDDz00k2MZ7FmPmJklFgjfXnPNYYcdlsnl9Imxe6KaH5uA0SXe+Zci25EurjDMoQ7Ops7X/1MoBUCsgso7Gdfjk6EHv9Ah4BEUqhpJybcVnnOLpR44AHJ5MQpa+hCJUFhJ7ynIbCL3zjuO4/RMvBN1HMepQIeq8/SyxlSp8jx4erypjsWOj9HIPHqqmbHzn3322Zk8b968wj6qsrxezNvb1TTiUY6p3THqtRcX+KN6TlMHZT4ztjXNQAyqZ5lY+77pTW/K5PJEidhEjrFjx9asd5d75BvJtsdhDptiU7lgBKi8scXmqDmP5LGoHy0JgpWL00x2Rnk6yzm3v7BofTnYhVkX+XmyUuyxYisAdDE+EnUcx6mAd6KO4zgV6FB1nh5vplMj9MZLxdRnVOXosaWaFfOatterG1PnuSb5rFmzCvve/OY31zxvLFVfd8JnwHah+lpvfflWjjvuuMLv2IQF5h8gsfbl82dbtzdPAtvriSeeKOw75phj2qxT7H66JLM9b4lfIpuFj5XWimLgSM6xxZ/9/pTLnKo+DzLjVFbx4DxbYTGWHXYBeu371C5SVOdZqJxKgRXk5xkL0OeiGIWKdy0+EnUcx6mAd6KO4zgV8E7UcRynAh1qE2U4S8yGVQ4HYk5LHh8LN4ltj808idnVKHNFStrRyslSYtfjPXQnsRyssRlEa9Zw3YbalNuL9ku2V+x6tH0yJIp25JidlvlHeR7aeDljqTzDLEbMJtre5VUqw0twFhCTetJguSyynZRcACMhcyIUJwsNiGzX/FxcxO1YXWWXObXPU1hUhpFmXOx3muJweEdb6YCI3I1uCR+JOo7jVMA7UcdxnAp0qDrPsBAmp2C+zf/8z/8sHPOa17wmk6kWN7LURXuTR8RUQi4jMWPGjEy+8cYbC8d/9rOfrXk81cNmIaZ289lwphBNGnxO5fbib+YjjSWPYbIPmgY484nlJ0yY0Ob5Wb/7778/k6+//vpCXd/2trdlMp8Bz8Vn0EjilA6Fl2B+UEZX8QuFjjwIKu4EFCkboLiPGi+/Ln4tD/JgRCM+yNAi1Pt3tatX1K7nRS7MdUnKUIWHyUBLIdPs0QURaTF8JOo4jlMB70Qdx3Eq0KHqPPNqUt2l+lSe3cPVGvfZZ59Mfu65fKzfSG7RRmYyUV2j93X06DwFA5NYsG5leH+TJk2KlutKYs+J5gbWm+1FrzifEz3qUnE5Dib44GqfNI/Qw97Ich9U/7ncR8xb/vzzz9esmxSPPhg3Lk+nwXezS3KIkpgVaCRkqrWY4bMrNhfU+ftVYCxkPn1qv9SqZzO5KCd8RfT/tfti+x9zkct79IEKvp1uflZcxRVIH2uJXJvb25ejqNPwkajjOE4FvBN1HMepQIeq8/fcc08mM2idHtByAPvUqVM7sgodyl577VX4TdWWCVYeeOCBLqtTPajOU22nCYVe6ttuuy2T6TlnopCZM2cWrhFbnbURGKXB57d+fe7XpcpfNiXUgp768ePHF/ZRvR82LHd/33rrrTXP1eXLg1B1ptpOTz0Ta8D9/RpsZvEHSxaMW9pbJ3q8/wJ5N8j0ljM/aDGda8Z2Pkqo4APvKpbjyiGD0fRPQy4kM4lNVuhifCTqOI5TAe9EHcdxKtCh6jwDn+n5bWROfDNSjiRg8Dc93uvWreuyOtWDKmjME84y9913Xya/9a1vzWSq8zTF7Ag0E/DaY8bkE7Cp2vN6fK6x4PdYFIhUfO/YdpxYQLrcO88hzLBIGbyC/XB7XNKD2Q0wrV1SSf1thMMh8xU6ATJV+8WQn4VMjzqbLjJJQJLo6OcUe1oMCvfD+rU9N6fT8JGo4zhOBbwTdRzHqUCHqvP0hj788MOZTBWNntiXVQYqKNW0zlazYktpPPvss4Vyv//97zOZy2H89a9/7cTaNU4s3wC3Uy2eO3duJj/5ZL7UIturkSVEyuy2W67vMWJg5MiRNbe3d2mXGIsWFRK26Y477shkeu5j0RRdMl+evBTZTk89VHgujrkoItfTaodC5iW2nYoftGC9CnJslU3I/XHxiEO+cN0Fpfrxa+PKH5sVYXtE7mJ8JOo4jlMB70Qdx3EqYF2uwjiO4/QifCTqOI5TAe9EHcdxKuCdqOM4TgW8E3Ucx6mAd6KO4zgV8E7UcZoAMzvBzJ7G733NbKaZrTWzi7qzbh2Fmc0zs1PbLtmzaJpONH3AG9OXpsXM7jGzC8ysaer4SsTM1uHf9rSNWn+/o7vr11Mxs2BmU1p/hxDuCiEwB8clkm4PIQwLIVzRwPmmm9lDZrYh/X96nbIzzGwT2pGd96WlNt+Ytns5t0nTYGZfMLNHzWyrmV3WRtmRZnaVmS1L/12Gfbua2bVmtsjMVpvZX8zsqLau32wd1FkhhGGSJkm6XNLHJf2gVkEza5IVVno3IYShrf8kPa+kjVq3/ay1nJl16BTiHaEZ6tAW7ajjJEmPN3jOAZJ+K+mnSpI6XSXpt+n2GBeiHbPOO4Tw5VKb/4ekGSGE+IJj3c+zSv7o/L6tgpK+oSQx1GRJR0p6l5n9Q7pvqKQHlEx4Ha3kOf7ezIbWOE9OCKEp/ilZnfrU0rYjlcyKPVDSjyX9j6SblOT4PlXSOEm/VJI5a66ki0rHPihpjZLVqv8z3T5Qycu2UsmyVw9IGtvd998T/rGNJJ0kaaGSP3RLJF2tJFf7N5VM516Uyjul5c+XdHfpfEHSlFQ+XdITktZKekHSv6HcmZJmpu11j6SDS3X6uKRZSqZZ9+vE+58g6Vfp+7ZS0rex772SnlQy7fsPkiaV7vPDkp5J39M7023rJa2T9NbW55mWv03JNPhN6f6pbdTr79JnZtj2vKTXR8rPkPS+Bu7XlOSxf087ntEblHT+Lel19i+11SfTdn5R0o8kDUz3jZF0Y3rcKkl3SerTzvb5qaTL2iizQtIR+H2ppLvqlF8j6VX1ztlsI9ECIYT7lXyordkM3y7pS0qyL94j6XeSHpG0h5IVEz5iZq9Ly/6XpP8KIQyXtLekn6fb3yNphJIPYmdJF6iYF8FpnN2U/MWeJOkDkj4l6WhJ0yUdouQP2acbPNcPJH0wJJrIgUo6EpnZoZJ+KOmDStrre5JuMDMurnGepDMkjQwh1F4WtCKp5nOjpPlKRjF7SLou3Xe2ko/x7yXtoqQDuLZ0inMkHSVpWgihdY2VQ0Iy4rueBUMIp6TnaB0tzjazG83sE5HqHSBpVki/+pRZKq64UeYrZrYiVVlPipQ5QcnCor+sc54MM5uq5L4/ouQ53CTpd6UR8TskvU7JNzlV+ftxsZJvfRcli5ReqjQTqZl9x8y+00gdGsRK8oE1CyUmkQEq5kZ5GU3diaYsUp6D9rchhL+EELZLOkjSLiGEz4cQXgohzJF0paS3pWW3SJpiZmNCCOtCCH/F9p2VjIC2hRAeCiHUXlvXaYvtkj4bQtgcQtio5AP5fAhhWQhhuaTPSXpXg+faImmamQ0PIbwYQmhNA/YBSd8LIdyXttdVSkacR+PYK0IIC9I6dBZHKtF8PhZCWB9C2BRCuDvdd4Gkr4QQnkw78S9Lmm5mXEv7KyGEVTtaxxDCmSGEyyO7h+rl+ZdXK57q+eOS9lLyh+D7Sjq6vWuUe4+kX4QQGs06/lZJvw8h/CmEsEXS1yQNknQsynw7batVSgZE56Xbt0jaXckIfktIbMTJMD6ED4UQPtRgHdriFkmfMLNhqU36vSrmfZYkmdlwJdrV50IIdXNb94ROdA/ly3Uxe9YkSeNSJ1SLmbUo+evVutT2Pyr5S/eUmT1gZmem269Wom5dlxqQv2pmxRT2TqMsDyEw9f04JSO1Vuan2xrhTUpU+vlmdoeZta50OEnSxaV2nlA6bzmrWmcwQdL8yEh3kqT/Qv1WKRnh7IEynVnHdZKGl7YNV2IaeRnpH6S16R+/q5QsSXc6y5jZYEnnKrELNkqh/dPBzgLFnwPfj/+nZMT3RzObU2fUXZWLlGiezyixI1+rZAScYWaDlGi5fw0hfKWtEzZ1J2pmRyhpgNa/+FRXFkiaG0IYiX/DQginS1II4ZkQwnlK1JH/kPQLMxuS/pX7XAhhmpK/kGdKeneX3VTvopy9ZpGSDqWVicrTXa4X/uKbGReZUAjhgRDC2Ura6zfKzS8LJH2p1M6DQwhUl7sii84CSRMjjqEFSkwRrOOgEMI9KNOZdXxc0sFWTLx7sBp0TCmpWzlp7xuV/DGY0Y56FNo/rc8EJfbaVrgqSPZ+pJ36xSGEvZTYVT9qZlzUtENItYF3hBB2CyEcoKQPzNY1Ss1Ev1HSsX6wkXM2ZSdqZsPTkeN1kn4aQni0RrH7Ja01s4+b2SAz62tmB6Ydr8zsnWa2S/rXsCU9ZruZnWxmB6U2rjVK1Iies/BTc3OtpE+b2S5pSMy/KzH2S4nt+oA0FGegpMtaDzKzAWb2DjMbkaqBa5S3yZWSLjCzoyxhiJmdYWYxVbWzuF/JikKXp3UYaGbHpfu+K+mTZnZAej8jzOzcNs63VIlK3RHMUOKIusjMdjKzC9Ptt5ULpiE+r0vr38+SMLVX6+WrK79H0k9KdlaZ2WVmNiNSj59LOsPMXpNqdxcrMb3wj8mHzWy8mY1WYkO/Pj3vmWY2Je14V6f309B3aWb903eqj6R+6b3VjN4xs73NbOe0vzhNibnoi63nkfQLJSPV96R9R9vU8zp15T8lnruNSlSQ1ZLuVeLR7Jvu/7GkL5aOGafkw12ixNv3V+Xe458qWQl7nZK/yOek28+T9LSSkdFSSVeoEz26vemfanjnS/sHps9zcfrvCqXe13T/p5R4RxdIeqdS77wS4/0taRuuURIxcTyOe326rSU97/9JGlauUxfc/0Qlo5SV6X1cgX3vkvRoWv8Fkn6IfVkUArZdkN5Li6S3lJ+nSh50STdLurRO3Q6V9FD6DT0s6VDsu1TSzam8S/os16bX/quk15bOtYeSnPVTalznB0o0g1g93qjE+75a0h2SDii9P63e+RYlpoLB6b5/TfevVzIK/AyO+66k79a55o/TZ8x/56f7TpC0DmXfomT0u0FJxMfrsO/E9NgNSvqN1n8n1HsvPJ+o4zgNY2YzJb0mhLCyu+vSLHgn6jiOU4GmtIk6juP0FLwTdRzHqYB3oo7jOBXwTtRxHKcCdTPKmFm3eZ369s3DvCZPnpzJzz33XLuO3bZtWyYfdNBBmfzYY49lclc710II5cDmDqGr22vAgAE15alTp2bynDlzapbZvr12CN5LL72UyQcckE/9njlzZs0yPE+9dmQcenvbu0vai1forFYcAXlgZDuHVYzE5TytzRGZZTZAXhspUy8Kk89jW7RUTTqrvWL4SNRxHKcC3ok6juNUoGmT2Pbvn+cEmTAhn24bU+eprlGFJ+PG5TkrHn201kzS3kOfPrX/PlKVrWrG2LJlSyYPGTIkk2l+mT8/z0fCOtHkwnqw3cePH5/Jf/vb3zI51r7FqeMv/13rek0Dk8Vtj8jtVGtfBnMxDYLMpIJ8ZAMi8hDILM8Z8mRTZHv5FWUaoI68707GR6KO4zgV8E7UcRynAk2rzm/alOsA73vf+zK5paUlk+mxjaloZ599diZfdFG+aOIf/vCHDqhl80LVmWotvdkxtbhR+MzpMb/wwgszecOG3E37xBNPtHmec845J5PPO++8TP71r3/d7vrF1PkqnvpOg18ihzZbIFPF3ZFqs7mZ44hL0L0EmV57wmvzEa+HvCOpp3ku1q/JVXsfiTqO41TAO1HHcZwKNK06Ty/tCSeckMlHHHFEJs+aNSuTf/SjH2Xyv//7v2fywIF5VDED7Hs7VFn79cubmeory2zdWm19N5oPjj/++Ew+7rjjMpntde21eWL6D34wTyA+eHC+3M099+S5fBupXz3vfEyuet8dBocz9JwzKJ4qLlXnHYEec6rIO0fKU+W/DzI96gywb2RVpnLaZP7uE5FpJmgSS4yPRB3HcSrgnajjOE4FmladZyD3kiVLMplB2vvtt18m//d//3cm07O/atWqTF6+fHmH17NZocoaC2yPzV/fETZvzidRL168OJNpltl///0z+atf/WomM+KC7UW5s6AZoiOfR7uhKsvgd1aJ89SrzrWPzWHn4uGjIC+CTBODRbbXXGe0RDl4InYfLMcea0u5YPfgI1HHcZwKeCfqOI5TgaZV58nGjblLbo899sjkNWty3YMqIVVLeufXr6/q0uw5UE2lTHWeaj7T1DXqsabJgMevW5e7Znfbbbea2xmEz6B/nocmHZoFuJ3E8gVIcVU95rXv8iB8qvOxOeSDVRt62su3GfNyD4dMjzdNBuwdeN7dIHO+PM/J89BEQNWc91m+RkxVj91PN1pifCTqOI5TAe9EHcdxKtAj1PnHH388k/fee+9M5nxtQnWP6vwLL9TO1dWUc6krElNfeX8xNZ/B+WVic/Kpbj/88MOZfNZZZ2UyzQSxoH+m1FuxYkXN88fMDfXarpF27db3IGZBYTViHvx6Q6HYnHyq3i9C3h7ZznrE0ujxWrHAe9ahPA+eqn4j6jmfRzd+tj4SdRzHqYB3oo7jOBVoKnU+pk7Rk0tVLlZ+6dKlmcwA71hqtN5ILKg+ltmezyaWgV4qqvox7z6jKWIREbw2vfa77757JtMUw2vV88LHrhFTz5vGlEP1dWtEZhk+Anq5qV5LRY8+m5KB9PSEL4XM8/LRTIO8LHLOlZBjJoUysXtt8s/WR6KO4zgV8E7UcRynAt6JOo7jVKCpbKIxm9SUKVMymbNbYjNmhg0blslMYjFp0qR2Xbe30EjSkdjMnbL9MWabpK10zz33rHm9WHjVTjvlhjzOQuN52L60kTca1hSz/zZN27MaseUwLCLT1ln+orlKJ22cDFPijKW+ke2cgcTQJ56H12YI1RLI9ZY4iT2D2H03CT4SdRzHqYB3oo7jOBVoKnU+xsknn5zJzz//fCZzxhJVeEJ1jflHezu8b5pAGlFrY8lLysfETANHHnlkJjPcjIlhYkuWDB+e64EMT2uEsmoeU9WbRoUnrBJVZ6rzbIpYjs1yUg8ewxAiHr8YMsOUMOuoD1K7bmda3iGQea3YI663cmdoQCZNotr7SNRxHKcC3ok6juNUoGnV+X322SeTuawHVUKyevXqTI55ZTkbprdDVTsW0dAI9VRfqvr0pK9cmU9X4WwkzjbjrKZRo3IdkvVmLtJGEqo0pZreKJw1RK947AuNNWNZRSb01DNBCD3ySBbSB/XgIqDLmb+UM6L4+GP12B6Rd4QmaW4fiTqO41TAO1HHcZwKNK06f9hhh2UyA62pssWWjGDiCqqy48eP7/B6NitUfynHAuljwfZ8flJ8eZEDDzwwk9lejKBgPV58MY/YptpOlZ/tFYsk6NEqPGFq3JgXnZ73vpEy5WERHw+Tk/B6OL4fVHg66hnXsjymtjPXDOvE++klzUV8JOo4jlMB70Qdx3Eq0LTqPAO2qVLGVNCYykoWL86jijkf/9lnn61W2R5EI/PoY+WleCD+9OnTa543JtNrH2svBurT+8/lR3olsXnjVMFjw59yk9LrH1u+A9cYqNoyF/iMquT0/tODH5sT30vwkajjOE4FvBN1HMepQNOq8/T2Ug2kF54p1GKrVfJYevN33jkPH34lqfMk5tmmh7zsnY+p83vttVfN4zdtyvU6nmvJkiU1y7MM24tz6nuNR74RYnPIY8uJlOei8Aund57LgITaRRjLcgzk/2uJ1IPqPFf4jK1k2kvwkajjOE4FvBN1HMepQNOq85MnT85kBmzHVpukSkg1kJ5fHsu5+ffdd1/1CvdSyqoz1W0+8wkTJmQy8xsw8J4eeWawp4mGbRQ7v1OHsupMawxUbIOnP2AoxcOZnL6QdWI1ZOr/ayBztc9ejo9EHcdxKuCdqOM4TgWaVp2n+jZ79uxMpqpOYpnc6UGmp/6ggw7qkHq+kqHaPm7cuEx++umnM5kmF86X5wKC69fnk66ZFo/p8vbdd98OqPErEFpjWnKRgfR94GHn17V/RB6wNpdf2jVyfgT5M+6+N+IjUcdxnAp4J+o4jlOBplLnqfoNGpQvaE31nAH2hGo7VXt6h+ntZfo1Z8dg5MPgwXmKc3rb2Y7czvZi9AXbl2q+t1d1+kK155R6rjXHKfW1l34sln+JPUiTLBzX1fhI1HEcpwLeiTqO41SgqdT5SZMm1dxOL+3QoUMzmephLDM71UbO4544cWK1yjqFhf/4nKmGjxgxIpO5mOCGDbniGJsLz/bae++9q1XWKQTPvwiZnQCn3k+GvAdkTpEvROdD3sTM+/UWz+sF+EjUcRynAt6JOo7jVKCp1Pn99tuv5nYGyXNuNb26MZWQqj2983vssUet4k47YPo7wvait53tFZuDT2jGYWZ7Z8cYAZnqPJ3qVOeHQmYQPgP1mQqvLxa528ZV7nixXoiPRB3HcSrgnajjOE4Fmkqdp4odU89jc+dj3nmq/zwnvfzOjhEzifD5x9agZ2QFVXsG7VPmSgROB4DhE9cr5FdHbz5NAQy2Z6Ftu9be7uq84ziOE8U7UcdxnAo0lTo/bFg+W5cqHlVyBnVzrj3lmCkgtmids2PETCJU4dl2VPPZXmwXwuz3PKezYxQ+dqSgeAledUbS92f2exRhHD1d+wOW4ZzU/3s5PhJ1HMepgHeijuM4FWgqdZ7Z0enJpeoXS3lHqB6yDI9lEDhVe3qNnfqwvfic+TyphscmTXA75bFjx9Ys73QAcLFvpTqfB0SoD9T5aHZ6zIt/6UBsR/Z7Gn24HH1vwUeijuM4FfBO1HEcpwLeiTqO41SgqQxNzD1Jm2hsNhLtZ7HtMZmMHj06k5cuXdrear9iiS0JQht2lfZat662BY32bK446tSnMNMIw6dC+herWaSQErSwCgjdEoshwxA6Dptnq/fhI1HHcZwKeCfqOI5TgaZS52NLf8RoRM2nWYAwZGbkyJGZ7Op841Cd53OOhZgx9IkqOctwaRGGpJFRo/JklUuWLGlvtV+xFOZ8QQ3n3L2t+Oy48ucayIXAQoQycRYUD+7lq4P4SNRxHKcK3ok6juNUoKnU+YED84UHYmpdzPMbS0ASSzoyd+7cmtd1Gmf48DxpJFfvpKkkloyE6jzbjmYBllm2bFnN7U7jrOYPuNgLhjM82o0IjuCMJU5wKvwYBBm5Rfsub7iKPRIfiTqO41TAO1HHcZwKNJU6f9xxx2Uyc0kSrgBJmWpgbBVQqv9U4ffdd99MfuSRR9pb7VcsbC+u2EkTyooVKzKZZhnmjl27NnfxvvhivpbEkCF5eDhV/n322SeT58+fv0N1f8XDVTqxuc/KXH4B2+lhL6QKRQ7RQlQ9vPa9PXOvj0Qdx3Eq4J2o4zhOBZpKnf/ud7+byZ/85Cczmd5YqoG77757Jq9atSqT6QWmas+52FQVqUI6jfOjH/0ok7/0pS9lMlV7PudXv/rVmbx4cT7ResqUKZlMjz9NMTxPbE69U5/CW54Hv1CzL8TLPw15BeRC8LxFZETkMx6/N+IjUcdxnAp4J+o4jlMBiy2xIUlmFt/ZyZx77rmZPG3atEweNCiP6J09O0+sNXPmzJpl6MGnF/7aa6/tsLq2lxCCtV2q/XR1e9Fj/ra3vS2Tp06dyjpl8n333ZfJjIJgCkSaAo444ohM/ulPf9oBNd4xekt7FYLhOZEeAfPDkWpiPxShys+gfVgFtIhzVqLriXQ+ndVeMXwk6jiOUwHvRB3HcSpQV513HMdx6uMjUcdxnAp4J+o4jlMB70Qdx3Eq4J2o4zhOBbwTdRzHqYB3ok6HYmbnm9nd+B3MbEq9YxzJzE4ws6fxe18zm2lma83sou6sW0dhZjPM7H3dXY+Opqk7UTN7u5k9aGbrzGyxmd1sZsdXPGevbMjOwMzmmdnG9PkvNbMfm9nQto902qL8xyWEcFcIYV8UuUTS7SGEYSGEKxo433Qze8jMNqT/T69T9sL0u9psZj8u7ZuW7nsx/fdnM5sWOVVTYGajzezXZrbezOab2dvrlL3MzLak73Trv73SfSeUtq9L2+lN9a7ftJ2omX1U0jclfVnSWEkTJX1H0tndWK1XImeFEIZKOkzS4ZI+3c31qYuZNVVmsjLtqN8kSY83eM4Bkn4r6aeSRkm6StJv0+21WCTpi5J+GNn3ZkmjJY2RdIOk6xqsc3fx35JeUtJPvEPS/5jZAXXKXx9CGIp/c6TsD1m2XdKZktZJuqXexZuyEzWzEZI+L+nDIYRfhRDWhxC2hBB+F0L4mJntZGbfNLNF6b9vmtlO6bGjzOxGM1ue/iW90czGp/u+JOkESd9O/8p8u/vusmcRQnhB0s2SDkz/OmedQaOjezMbYWY/Sdtmvpl92sz6pO3ZYmYHouwu6Sh41/T3mal622Jm95jZwSg7z8w+bmazJK3vrI7UzCaY2a/S+q/k+2Nm7zWzJ9N37g9mNgn7gpl92MyekfSMmd2Z7nokfQ/famYnmdnCtPxtkk5W/p5OVX1OUpLW8pshhM3pyNUknVKrcPpN/UbSyhr7WkII80IyC8eUZL5r2BxjZsea2QNmtjr9/9hSkb3N7H4zW2NmvzWz0elxA83sp+lzbUmPHdvA9YZIepOkz4QQ1oUQ7lbS8b+r0TrX4T2SfhFCWF+vUFN2opKOkTRQ0q8j+z8l6WhJ0yUdIulI5SOkPpJ+pOQv+UQl6RW+LUkhhE9JukvShelfmws7qf69DjObIOl0ldJStpNvKVldYi9JJ0p6t6R/CCFslvQrSeeh7Fsk3RFCWGZmhyoZNX1Q0s6SvifphtY/nCnnSTpD0sgQwlZ1MGbWV9KNkuZLmixpD6UjNDM7W9Klkv5e0i5K3rFyhptzJB0laVoIoTWx6iHpe3g9C4YQTlHxPZ2dDgY+EaneAZJmheL0w1np9h3CzFqUpBH5lhJtsJFjRkv6vaQrlLTTf0r6vZntjGLvlvReSbtL2pqWlZIOa4SkCemxFyhNjWJmnzCzGyOXnSppawhhNrY9ovr3fpaZrTKzx83snyL3MkTJiPyqOudJCCE03T8lQ/IldfY/J+l0/H6dpHmRstMlvYjfMyS9r7vvsSf8kzRPiTrToqTz+I6k/ZWk3O1X65lKOl/S3dgXlIxk+ipRuaZh3wclzUjlUyU9h31/kfTuVP4fSV8o1e1pSSeinu/t5GdxjKTlvG/su1nSP+J3H0kbJE3CMzildEyQNAW/T5K0cEfeU0mfkXRdadvPJF3WxnFflPTjOvuHSPqQpDMarMe7JN1f2navpPNxT5dj37T0neirpGO9R9LB7WyXE8p9haT3t75XNcpPU7IaVF9Jx0paLOm8yL3MVTo1vt6/Zh2JrpQ0po5aNk7JR93K/HSbzGywmX0vVRfXSLpT0sh0JOG0n3NCCCNDCJNCCB9SadnxdjBGyZpl5XbbI5VvlzTYzI4ys8lK/vi1aiKTJF2cqnkt6ShpgopLoy3YwXo1ygRJ80PtUe4kSf+Fuq1SogrvgTKdWb91koaXtg1XxaTyIVFjvyvpJ61mlTYof5dSsY2l4nOYr+SdGCPpakl/kHRdaqL7qpk1ssZdu+49hPBECGFRCGFbCOEeSf+lZMRZ5j2SfhLSHrUezdqJ3itpsxIVqBaLlLy4rUxMt0nSxZL2lXRUCGG4pFbVqTXHoGdcqUarfWgwtu3WwHErJG3Ry9vtBUkKIWyT9HMlavl5km4MIbR+CAskfSntzFv/DQ4hUGXu7HZdIGli5A/7AkkfLNVvUPqRdkX9Hpd0sJkxj+bBatAx1QZ9lLT1Hm0V1Mu/SwltnDKhtG+LpBUh8Xl8LoQwTckI8Uwlqn9bzJbUz8z2wbZD1Pi9t9p+M1LT1UmSftLICZqyEw0hrJb075L+28zOSUeX/c3sNDP7qhJ706dT58OYtGxr1t5hSkZLLamN5rOl0y9VYpNzdoAQwnIlH8U7zayvmb1X0t4NHNfaSX7JzIaljpePKm83SbpG0luVmHOuwfYrJV2QjlLNzIaY2RlmNkxdx/1KVL/L0+sPNLPWNaO/K+mTlnqEUwfaubETpXTkezhDiQPootRJ12rrv61WYTPrZ2YDlai0fdN76Zfue62ZHZq27XAlds0XJT2Z7j/fzOZF6nGTpKmWhCb2M7O3KlGfac98pyVhVIOVOI9/EULYZmYnm9lBqca4Rknnuv1lVyiRjpZ/JenzabscpySC5+rIvZ9tifPZzOxISRcpiWwg75J0Twjhubau31qJpv2n5GN6UMnoZ4kSo/WxSpxOVyh5qRen8sD0mHFKXqp1Sv5KfVCw4Smxbc1W8mJc0d332Mz/lNgaT62x/TQl9qIWSV+XdIfasImm8iglneZyJaO3f5fUp3TuZ5WowwNK218v6YH0mosl/Z+kYfXq2QnPY6Kk3ygxN63g+5N+eI8q6QAWSPphrWeAbRek99GixIl2kurYRJXYXS+tU7dDJT2kZADxsKRDse9SSTfj92VpnfjvsnTfuZKeSr+f5ek3dzCO/Yykn9Wpx/FpPVan/x9fuqevKPmDtEbS7ySNSfedp8TOvV7JH5gr8M0W6l/jmqPTdlkv6XlJb8e+EyStw+9r0/Zbl97nRTXO95Rg427rn+cTdRynYczsj5L+JYTwZHfXpVnwTtRxHKcCTWkTdRzH6Sl4J+o4jlMB70Qdx3Eq4J2o4zhOBeomajCzTvc6MT445uQaNWpUJr/4Yj51e++98/DEMWPGZPK2bdsyefPmzZn86KOPVqtsBxFCsLZLtR+2V58++d/H7dvzcLu+ffOJW3ze3F6vTbiP52W54cPzCSRsr4kTJ2byyJEja55z69Z8QtDTT2fpNQvX2mmnnWpuL9eVv2PlYnLpPJ3eXhqFHesgcxoD02AwNQdzNZVvYRtkzjXjvCuGwqM8g38nQp4DeSnkTQyz57UOhcx5RBuKVS0csz6ynfJmyKh3Z7VXDB+JOo7jVMA7UcdxnAp0eQJbqo1SUfWmWkc1vH//PA/Bhg25DjBo0KBMbmlpyeQBA3L9ZsuWLZl85ZVXZvIll1zS3qr3KGLqOVVhqq/9+vWrWZ5mASneXnz+ZM2aNTW3r1q1KpOHDas9e/O3v81n433kIx+pWad66jjrSnWeMsuQLomfZnqN3SEzy+cRkF+KlGcWg011rsdbvTMXDduZOPQkyLQ28AvmKRf+C348Ejl4C+RyipDlkFdBboHMZ8NXkyaQLsZHoo7jOBXwTtRxHKcCdad9doV3nrztbW/L5ClTcsXi4IOzlSD05jfnqf++9rWvZfKhh+YuwFNPPTWT//znP2fy+9///kxeuHBhJtMj3Ei0QFW6wttLkwbvY+DAgZlMtZbqPMvz2UhFMwHbYvLkyZk8dWq+msXZZ5+dyV//+tczeb/99stkttfdd2cLhRZMLvPmzctkqvPF7G9xYuo87y9WptPaqw++r8OxYzXkEyHTY83EdFThny9dhBlX59UutwuSxnGlPDrPXwOZVog/Q77/dfixEDKXuRsQkaVixADvlSr8/EgZmALcO+84jtOD8E7UcRynAk2lzlM9ZMD2D3+Yr+x60003ZfL48eMzec8998zkoUPzpdGpWj7zzDMdV9kKdIU6z4gGeqAHD85dubG2p7q8aVPR3ctjqKoPGTIkk6+9Nk84/7Of/SyTd901X2Fil112qVmn17wmVxznzp1b87qxyINy5Ecjaj/vj2X4zLpEnafKuwjyWZDpCme64pGQ4XWXVFB5+87LZcbwv3BQLr8N81G40tt7IHPVucmQl3PZQAbC0/TAMruoyGjIjDhgVALXChgEGeYDV+cdx3F6EN6JOo7jVKBDg+1jnm16ig877LDCMZxDzUBwzos/4IBcsTj99NMzmQHeixcvzmSq8GTffXPfI6+1aFGuP1ENXrqUM4OLHttmJzZXnNup7lJ95bNhZIRUNLOwXSdNyidO8zmfd16+lPwDDzyQyQsW5Is+vv71r695D3wH2C7Ll+euWEYVrF5Nt3bcXBGbTNDl7cvqMbicavuLkDkngeWp+hYfQSGgncWoYb+AyfDX5RYyBarIKF8YeUFx3gMq/EgUeQJz83kLa1hIKoYDsCmGQB4KuRsD7ImPRB3HcSrgnajjOE4FusQ7P3369Ew+4YQTCvuY7ozqOefI77FHrnxQZWPg+N/+9rdMpurH+fW8V6Zl4/aXXspdgfPnM7JXWrFihTqCrvDOx7zRMc82OfLII2vKkvTUU09lMp/Hxo15jrKxY/M8bWxTqstPPpmvc0aVnJEVrB/fAargbK8lS5YU6rpy5cqax8TaO0aXpMKjmkpVFup1YcjDiHd413Vv6SIMrlgMmWo4vvKBKHI65Lsh08G+DDItDPT+M1aeD3LZnirCexoJmc/jQbWJe+cdx3F6EN6JOo7jVKBLUuExM/2zzz5b2Ef1jV5XeoGpllGFPPzwfMIx1c7HHnsskxnUzZRrzLjO81PlpCmgpxEz0/D+Yuo8IybqtRcjImLPljLzIRx0UK6DMo8B2yuWIZ8mAkYVMFpAqjsXXk1HzNNMbzubi7daTilHoAoXWhuPgIe/AH0+wBTAufNfw7XHwhrCp8q4lhcxB6IvIw+K1pdi8D2z7W9UU+MjUcdxnAp4J+o4jlOBTlPnqfZR1aMKKElveMMbMpkLydHzTtaty/Ueqm9UvZnNPrYwG73/lDmPm3JvIRZQTtWZbccUdFIxv8FDDz2UyTHTB9uL7wE98lTnOQefHnWudLB+fT4hnNctq/OxSQY9CurF1MdHQOY89fJCApgrMRLnehGPajsDFOAh/xvU+cK0E3jVlzJ9XTkNX+spkc2eHc7Qkpq+nKYLprmrvfhA0+AjUcdxnAp4J+o4jlMB70Qdx3Eq0Gk20VhikfKsEs5uYXgL7V5cwoH5H7mSJO2gDN1h+BJnO9HeRpl2NdrtyvdBG11vYMSI3MjGGV8vvPBCodxuu+VzUdh2bC+2BZ8TZzWVlx1phSFsDGWK5ROl7bzcXryPXtFejCHiTCSERw3g9CBJL8Gsz1Cm/rCDFkyOCEd6CpuZG6SQ35MHY9ZVfyRO2QJb7hbcQ3l1kIIdtPbr0ZT4SNRxHKcC3ok6juNUoNPUeaqHTPJAFU0qzkShusztVM8ZqkJVjqoiVX6WYTgMw5qollIlLNeVYUCcXdUb4L3x2dAcIhXvm+21alWefoLqNtX22KwmmgJoTqHMOnGZEbYXzTvl6/UKdZ5QpUZo0ehSsSXP5TIjpJhEZB31aqjUK0dhO3sKvvo8EVR4js6GQoVnoNnq0oS5AVDh204L0zz4SNRxHKcC3ok6juNUoNPUec72oTrPhBFSUcUeM2ZMJi9blmcqpGc2ljyCaiPVydisl5jHP+Y1LpfrbdDsQdW5/DyoYu+8c77uI6Mu+MxJzCxDlZzH0svPd4jtwDLl6/Y6FR4Mh168Fst4vGyOHRJ+UvPm/LJ1XLODHnKejD0FP2E8cq7iwdSgLE7LwebSp9yTVHjiI1HHcZwKeCfqOI5TgU5T56keUoUvq8T0jDPvKAPjqTZSnaSqyWtQ9YutbklP7oknnpjJXGakbDqI5d/sDfC58vlRXZaKbcQJFfS2cykPnpdtxPPynaAZiM+bHvyTTz45kx9++OGa5aWXB9/3JoZDHgm5FGuvCVizg+oyj19O3Z5R9f0j2xkEAWsPi7dARvx+wYywbVcV4QleUI/BR6KO4zgV8E7UcRynAp2m78QCpcsqF4O86eGlqhjLCxnzzLI8y8TUO+bInD17diYvWrSoUC6W47Q3wHnmbK8ysdywo0fnYd6x9qKZgO9Be9vrbW97WyZztdhyXgbmJu1t8E1cF9kuxRcILav9GQX3eUQG9Pivrl1E23bP5cB0wi+WCu6iHomPRB3HcSrgnajjOE4FOk2db2QevCTtu+++mUwvLQOlGZDPQHrC7TGPPJeqIG984xsz+etf/3omU/2Uistm9DZofinnDCBTp07NZLYXPe9Uz/kexFYajckxs8LZZ5+dyZdffnkml9uLpqLeBtVoxruUR0U0aFDdXhU7wTjI83KxP5by2JIHX6gPvOiBrncu/YEA/kK8S3neTNyK1NT4SNRxHKcC3ok6juNUoNPUeap0DGyneidJe+6ZLx24du3amuXoFaf3NuYFLs/PbyUWJUCvLgPFZ82aVTg+Nie8N8Dnx/ai116SJk+enMkMgGd70TTA9mK7UOa1KcfUea4OyvZ67LHHCuV6c3uxVXiXw0rlqGEv5A4exOD5fO6LBkAlpxFtC2wEI7F9I87JjmU0zs+p+S/LXt9D57L03rfMcRynC/BO1HEcpwIdqs5T7Y6loKvnMeW86dhCdVQPy6pmKwzSpspP7y3VwHHjcpfk+PHjo/Xrbeohnx/NG/S612svRk3E0gnGTCux1IUxswzbiIvlcXuZ3pbrYAxkqun13kpmPih8Lfzy6Z1Hc0/FZjrSH4eVpTCdAXPh+87NZdaVZoGCal+uRw+id/UKjuM4XYx3oo7jOBXoUHU+FghPby+DtctwsTmaAHheBrxT3aOqHQu2p5rP9dTpnd9nn32i9YutfR5TWZudWHsxSmLvvfcu7KOKzPaiqYSeeppoGoms4PlZP87TZ3tNmTKl5j2UrxGbq9+ToHGCLce49rLxhQvDxdaXH4DH8RIi8pnYvpAxHyctxNqgIpsxL6UP5rjUzT4Be8NgnKvZY/B9JOo4jlMB70Qdx3Eq0CXB9gyaPuyww6LlqB7S8xvLiN6I5zemKhJGAnAuf5mYaaCnqvMxtZbP41WvelVhX0ydpwofi6aILQIYC7yP1ZX1q2ceYhtRLmfr7ynQu87MdEMi26Wiql8w3rTkIr3nzD7ATBGFNxw6eeFJsumgwvOrqx1PkwKbQd818WLNho9EHcdxKuCdqOM4TgU6VJ2PBW9TFWMG9HI5eoWZlZxzsemxpUc4lgWdqiJNBFTpVq7M83zXW9ysEdNAT4LtFZtIMGbMmMJvlmN7MeN9rL34zGORAYQmAkZrMFVfbMKFFDcf9FT4ZjJQnXdZXrudnm0abyyynTo/Y98LSSBRkeXczh94nZZDza+bvB43NSBequnwkajjOE4FvBN1HMepQIeq8zE1jmoVVWqpqOpzrXmuR88yDLaPZU1n+ZjKygkAvO6ECRMUg/fRG+bR03QRU68ZLC/FzS+czx5rL+ZWiGXCZ3uxTmwvqvMTJ06sWe/yNWJmhRjNaK5hS7B2z0MeVTqG6jzVfp4rFlvCp0QvP/V/fgWDsH0jZKrmSyPXklTojdodP7FT20U6i57fEziO43Qj3ok6juNUoEPV+UbmJ+++++6F388++2zNY6ieU42OyVTXYqpYLJD7ySefzOR6wfa9TZ1vpL2YMlCSnnnmmZrHUG4kaz2fH+VG1GiuNb/ffvtFy7U3GqDZ4ccaiztoKf2m8YwtTHX5JT6aEbm4ApsLGfMjHvyNDJTABbi8fNGYVwIna/d8+U6bNtQ2Pb8ncBzH6Ua8E3Ucx6lAp6nzMdW57E3lomM8np53qnv07nM71cnY9nJkQCtcj76ex5pqar2g/O4idt8xVb0RNZoLCUrFlHQ8LydHUI3mM4/lG4iZFWLtxVwMsTJS8R1k5Ajn3sfoknR5IyEzSp4T4LfVLrIscspQcs9vgFt9DNTlFbSqselhJ+BTKgS/x1znETf/doQCrMdcm7ELi+WWIgnAVn5ea9U23TivwkeijuM4FfBO1HEcpwLeiTqO41Sg0wx7tEGRsg2LITO0kzHhRCx8httj12sk1ydtZKxfebYOQ5xi1+uplO+1Fc44kqSnnnoqk2N5Qxuxx3JmUiOhbYTtxcQn9dqL9/Hiiy+qKaAtsk9kO+CTbOFnxOlExYg0CXbHAYxHYl4ZfiKIZcJKIQXzLa9XMI+yTjSospeZlIvbSzbRwjM4AvJtaptuTOnrI1HHcZwKeCfqOI5TgQ5V52MJJsjkyZMLv++5555MZjgNZzZxGQqqYrFwJG6n2hjLPcnzjxiRT9kohzj1tvyUbK8Y+++/f+E324srgTJ0jSFjTO4SM4HwObNMrDzzyO68886ZXA47q5L/tctnpG2NyKBwB7tBngv55NJBUIVXtWA7I9dWQcZUoc34XAo5WxBr9RKbKDYpjElEEeG45i+lcjQ31J3aVIMRbRfpLHwk6jiOUwHvRB3HcSrQoeo81alNm/KxOdW1sgr54IMPZjJVLnrnqVpxeRF6aVmGs2fovaV6x3o8/PDDmbxkyZJMLucWZeKLestSdBeNeMUJ74HtRcre+fvvvz+TGcnA49kWI0eOzGSq+bGZSbH2omrPOrC9yit/PvLII5kciz6IEZtx16FsisiRtTsKE3egOo/F5qWTVCRf+UabDsZ2Tn+i+QAX6QcVvpBPtCVyLOBXvmk+fhyZi5shS1L/vFm1pW7i0Ro0Mqupk/CRqOM4TgW8E3Ucx6lAh6rzMXVy3LhxmVz2uP7iF7/oyCq8DK7kGYMmBZoCTjnllEK5Rx99tGa5ZqSRXKGx9mIO0bKX+vrrr89kmmliAfPtpb3tNWpUnnHjda97XaEczTTtpUu882yWgv5bu3jB+Y1jC7k3F6sIk4LylhZBpnce56WmvgRyNNkHAnIKt8DyB0EuBV9smYcf7X2F2uvN70B8JOo4jlMB70Qdx3Eq0KHq/KRJuWuQQev00H7hC1/oyEt2OFdccUUmz507t7CPK1pS3WuaudigEe8824tRDwxg/+xnP1s4JpaztCuhqeKrX/1qJj/33HOFcvXMEm3RJfdGL3wDc78LWnTeRFq7HNvpCZckWp2Yp5Qn66hABN4Dg1e4EuedkMsBE8g1GjNpROmCYIoYPhJ1HMepgHeijuM4FehQdZ7B1AzkXrNmTSbPmDGjoXM14l3uDH75y19mMudoS82/YmR7nxOX2WhpaclktuOf/vSnwjFV5qNXIaaOX3vttZlczm3AY9obMdAl7xzV35eipTJa+INed3qmH1URBqFz3sQadTz0to+KlHkccnm+OyP6217BpUi7lwftOHwk6jiOUwHvRB3HcSpg3eVhdRzH6Q34SNRxHKcC3ok6juNUwDtRx3GcCngn6jiOUwHvRB3HcSrwiuhEzSyY2ZQGyk1Oy3boJASnccxsnpmd2t316GrM7AQzexq/9zWzmWa21swu6s66dRS9tW27tRM1s+PN7B4zW21mq8zsL2Z2RHfWycnx9uk8yn/YQwh3hRD2RZFLJN0eQhgWQrji5Wd42fmmm9lDZrYh/X96pNxOZvYDM5ufdtAzzey0UpnXmNlT6bluN7PyoiNNRTr4uT2t71P1Omoze9zM1uHfVjP7HfafYmYPm9kaM5tjZh9o6/rd1oma2XBJN0r6lpL8LXtI+pyKuWacbqInt08zaxLtqNskFSdJ1jvnAEm/lfRTJRMur5L023R7mX6SFkg6UcnEy09L+rmZTU7PNUbSryR9Rkm7Pyjp+hrnaSaulfQ3JbmtPiXpF2a2S62CIYQDQghDQwhDJQ1T8iz+T5LMrL+kX0v6npJn81ZJ/2lmh9S9egihW/5JOlxSS2Tf3kpWzF6pZJbwzySNxP55kv5N0ixJq5U08kDs/5iSHN+LJL1XSb7uKem+M9IHviZ9gJfhuMlp2X7d9Vya5V8b7XO+pLslfU3Si0pWPj8N+0dI+kHaBi9I+qKkvu1o21NTef/03Oelv8+UNFPJNPJ7JB1cOu7j6TuxuTPaUNIEJR3M8rT+38a+90p6Mn0ef5A0CfuCpA9Leia9nzvTbeslrVPysZ4kaWFa/jYlM+s3pfuntlGvv0ufs2Hb85Je3+B9zZL0plT+gKR7sG+Iklnt+zV4rjco6fxbJM2QtH+pjT4p6Yn0Of1I6XcraYySP9otSnLt3yWpTwPXm5q29zBsu0vSBQ0ce6KS7AJD0t9j03YZjDIPtL5/0fN05YdZuoHh6Yt4laTTJI3CvimSXqskE+Eu6Uv3zVJj3C9pnJK/lk+2PjRJr5e0VNKB6QtwjYqd6ElKFinoI+ngtOw56b7J8k60kfY5X9IWSe9XsmrFPyn5g9U6A671r/kQSbumbfXBdrTtqZIOU9IRnJluP1TSMklHpdd8T1p2Jxw3U0lHN6gTnkdfSY9I+kZ6XwMlHZ/uO1vSs0o6/X5KRnfsiIKkP6Xv6iBsm4IyJyntRNPfMyS9D79vlPSJSN3+VdLNpW03Srq4gfsaq6Sz3i/9/V+S/qdU5jGlnWwb55qq5A/Da5VkFL0kfS4D0EaPpW00WtJfJH0x3fcVSd9Nj+sv6QS8T9+R9J3INd8o6cnStm9L+lYD9f2hpB+Xtl2j5A9eX0nHpO/chLrn6eYPdX9JP5a0UEma2Bskja1R7hxJfyt9aO/E769K+i4ezOWlhi28sKVzf1PSN1J5srwTbbN9lHSiz6Lc4PS57Zbu3yx0ZJLOU2Lfq3WNWm37ufSaJ2H7/0j6QunYpyWdiOPe24nP4hglI9CXvRuSbpb0j/jdR0leoUnp7yDplNIx7epE26jbZyRdV9r2M0HLihzXX9KfJX0P237A7yfd9hdJ5zdYj5+XnsMLre2YttEF2H+6pOdS+fNKTBI1v9M613yXpL+Wtn1Jpc6xxnGDlWijJ5W2n6VkYLU1/ff+turQrY6lEMKTIYTzQwjjlYwcx0n6ppmNNbPrzOwFM1ujxNYzpnQ4187aoDzR1zglanorhVzfZnZUaoRebmarJV1Q49yO4u2T7l6Ccq2JyIYqseX1l7TYzFrMrEXJqHRXSWqwbS9QMpKbgW2TJF3ces70vBPSOrXCdu9oJkiaH0KotUzbJEn/hXqtUpK3fg+U6cy6rVOiOZDhqrMau5n1kXS1kiR8F1Y5FxgnfG8hhO1K7jv2HOYrb7//p2TU+sfUofOJBq5Xpb5/r6Sd7mjdYGb7SbpO0ruVJPY7QNIlZnZGvRM1TYhTCOEpJaOeAyV9Wclf6oNCCMMlvVPFxRTqsVjJC9/KxNL+a5SMqCaEEEYoUSG6LjFmD6XUPvVYoGQkOiaEMDL9NzyEcEC6v5G2vUDSRDP7Rum8X8I5R4YQBocQrkWZsGN31xAL0jrVcgwtUGKuYN0GhRDu6aK6PS7pYCsmeD1YEcdUWu4HSrSGN4UQtpTOdQjKDlFix27EybVIyR8UXmeCktFoK+Vvc5EkhRDWhhAuDiHspcSu+lEze00D13xc0l5mNgzbDmmgvu+R9JOQDj9TDpQ0O4TwhxDC9hDC05J+r8ScFaU7vfP7mdnFZjY+/T1Bidr3VyVes3WSVpvZHkocRY3yc0nnm9k0Mxss6bOl/cMkrQohbDKzIyW9veq99EbaaJ8oIYTFkv4o6etmNtzM+pjZ3mZ2YlqkkbZdq8S2/WozuzzddqWkC1JNwsxsiJmdUfp4OpP7lfyBvjy99kAzOy7d911JnzSzAyTJzEaY2bltnG+ppL06qG4zlDiiLkpDmFpHlrdFyv+PElPNWSGEjaV9v5Z0oJm9ycwGSvp3SbPSP6Iys8vMbEbkvD+XdEYaItVf0sVK/qDyj8mHzWy8mY1W4km/Pj3vmWY2Je14V6f302Ym7RDCbCW28M+mbfJGJX9Afhk7Jn2nT1Zi7yd/k7RPGuZkZra3EmfmrLYq0S3/lAzxf67kr9T69P/vKRmKHyDpISUf20wljUF70TylHtz092WSforfn1Cibtbyzr9ZiRqxVonx/dutx8ptoo22z/mS7i6V5zMeoeRDXajkg/ibpLel+xpuWyXOh0eU2kKVdKwPKPHgLlYSmjKs1jvRSc9koqTfKI8suAL73qUkr3xr1McPaz0bbLsgvYcWSW9R246lmyVdWqduh6bPdaOkhyUdin2XKnU8KRkpBuWe/9Z/70D5UyU9lZ5rhqTJ2PcDJRpBrB5vVOJ9X61EVT6g1Lat3vkWJZ3Y4HTfv6b716fvzWdw3HeV+jwi15yc1nOjEjs5+4Z3SHq8VP6Tku6KnOstSpxfa9N6/IfaiBLwfKKO4zSMmc2U9JoQwsrurkuz4J2o4zhOBZrGseQ4jtMT8U7UcRynAt6JOo7jVMA7UcdxnArUzShjZu516gRCCJ0S3N8Z7dWnT/Hv7PbteegeY7t7s4OyJ7XXy+bucN7OTpA3dfiVm4bOaq8YPhJ1HMepgHeijuM4FWja5LVOc0D1vUxvVuG7BA5h2pzg2CAbSr/ZRL1Yhe9OfCTqOI5TAe9EHcdxKuDqvOP0JsrZTumndutLp+AjUcdxnAp4J+o4jlMBV+d7KcUk5zk91aPOoP96EQM9loGQt0HeUi7YTrqruYdCXtdNdegifCTqOI5TAe9EHcdxKuDqfC+FajtV+1fKfPceAS0uVNv7QuZ8982dW50O5RW09KOPRB3HcSrgnajjOE4FXJ1/BdBTPdv9+/evKW/enOu127ZtU4+FVeeXOBgy58JTzW/G2x4HmavLPwN5VRfVpQvxkajjOE4FvBN1HMepgKvzvZSYF75v31wnpGrfjGo+VXjSK6MKYmnxRkKmat+MAexU4dlE5fn8vQwfiTqO41TAO1HHcZwKuDrfS6HKS+98bE59M0LTQ+x+uL1Hq/kMth8CmXPq10NuxhR3XCSP0QO8B6r25Sz8PRQfiTqO41TAO1HHcZwKeCfqOI5TAbeJvgJorz2xO22LrF+srrHyPXr2EmcjMdHIbpHttC2+BLmrm24YZNpyWVcO1QZBdpuo4ziO452o4zhOBVydfwVAVTim8nanCj9wYB4D069f/krGVPVYftSq6nzsvJ1GI0OYFyFzJlN3qvD7Q2bSkdgSJ8yJykloKyvWI3beLsZHoo7jOBXwTtRxHKcCrs73UqiOdmc+0Vg9KFOdp1mBdW0kiQq3S3H1nnVikpOddsr1w02bNtU8tkPhEIbq6ADInKUUInJHQpWc3nbmOD0AcixKgDJX/qTXfnTp2rFco/ToM1phCuQnI8d2AT4SdRzHqYB3oo7jOBXocnV+5513Lvzea6+9Mnnw4FxnmDhxYiY/9thjmfz+978/k3/6059m8qJFizJ59erVmfzii3Rv5uyIitvsK2XGVOcYjdz3sGHDCr/ZLqNGjaq5/dlnn83k9773vZn8q1/9KpOXLFmSyWyvlStzl22sfjE1v3zP9PTH5FhkwNatXZAEkwEAVKN5G6xGAzlEx5d+82ubGzntBnrY10I+EDJVcpoYqJ6vgUxrCIPqY4lWpGLg/h6Qd4FMUwJvbrm6DR+JOo7jVMA7UcdxnArUVedjAccxVZbeUXpGTznllEy+8MILC8fsvffemUx1/qWXcvfenDlzMnns2LGZfOedd2byhz/84Uw+9dRTM/nss8/O5L/+9a+ZHFMVBwzIXaOsg9ScKjxp77zzmPr6qle9KpPf+c53Fo7Zd999M3m33XJXKb3cixcvzuTRo3MX7P3335/JbK+TTz45k88999xMvvvuu2vWj/fDeyh74/kM2K4x1Z7n7ZJg+50iMi/N15Ree7yap2HzW0qXWAr5Zsj3sxBVdZoMqJKzp6CFjPYDfi48D1V+mgLK3vkRkCdCpjrPY3g9mkO6GB+JOo7jVMA7UcdxnApYPRW1T58+AXK2PaYK81yHHXZYJn/2s5/N5KeffrpwzMMPP5zJDz30UCa3tLRk8umnn57JRx99dCZPmZJH265bl+sPNBEwGmDu3Nw/+dWvfjWTb7jhhlq302mEEDpFV+zXr1/WAFRfqebGPNt77rlnJn/oQx/K5BdeeKFwDXren3nmmUzesCF3wZ555pmZfMQRR2Ty5MmTM3nNmtyVywiN4cPzNSaefDKPoP7GN76RyTNmzMhkqvllFZzmpUY89Xw2fJ82bdrUKe1lIy1vgJHYwU+SajE+u9e35PI/o8htpWv8AfJj9MLvCTm2BMniyHa49geiHvuhCM0Iiw/GjxWR60rF5UXGQqYKT9WedborF8PTnfN9xfCRqOM4TgW8E3Ucx6lAXXXezHbYHU3VaMyYMZm8alVsgmw1qI5eeumlmTx9+vRMpoq7fn2uC1x//fWZHPMsS/FgdqqNsXnZt92WK1oPPfRQp6gbAwYMyNqL12ZbxILIGblw4oknZjKfk1S8b16Dcmz+O4+dNGlSJtN8MG3atEymqk1zwU033ZTJ9dpr0KB80vXQobkLmgH2fCe4/f/+7/8y+c477+wcdX4Cvi/OCafXeQlk1CJAX+YU8ufKF6HnfQJkqsv0ntMjz+D3fD6E9nwkl/dCEU6v52n+XK5ThMAUe4dDphmCz2kU5CtxnrtdnXccx+kxeCfqOI5TgbrB9uPH55G0U6dOzWSqVhs3bsxkqm7f/OY3M5kpxo499tjCNUaOHJnJVKeoHlJdpreXwd709s6ePTuTb7311kymN3nhwoWZfM4552Ty8ccfX/OcUlEVpmoay8bOe3vggQfU2XD++oEH5hOfqZJzbjrv5yc/+UkmUw2m2i0VVWbeH73qnG9/0EEHZfLuu++eyWvX5pO06YW/9957M5ntSLX9da97XSYfeeSRmbx5M/XSYlQC3y3eH2WanVi+0+Dc8ZGQGfwyB3L+qekabKYD/2wV2YydjyFd3EJ63o+EvAgyg+oxGWAuTARzmcKPcx3gaR+1sOZmzS8P4eZBpiFxd8h7Q94VMuvdxfhI1HEcpwLeiTqO41Sgrnd+1KhR2U6q4bvumo+jqfJTnWeqs3Hj6F4rQu/oli15niyqoEuX5q5IBsxTprpXBaqlZU821XbSyAJnnDzQWcH2Y8eOzdrr1a9+dbadaipVbZpinn/++UzeZZc8ork8sWLIkFwHZa4Dqs40g7CNaE5hm8bWvG8kFd6IEfmE6/LceZqEYu0S284okq1bt3aOd34yvPNUTeHanvJoLk9GEU4tp8GFU/AliVMlboL8HF3pDIbnI2QgDefts1mY2o52BT4xpsLjsK1cWV6D1pTY+vSRa4RV7p13HMfpMXgn6jiOU4FOC7Z34nTF3PlYWjyaKGLz6BuFqjBNHTE1Ohbo38h68bH15WOmgKrwetu3b+8cdX4Uvi8GtlOVpUrNeQ87so4ez8s56Ay856JwzBbPR8ugFTYdh2RcM5Dl+QrQFFCmvQsLwBQQNrs67ziO02PwTtRxHKcCvu58LyKm2lKNbkR1rno9rgjA6AuW4XZOxoidP2YKYJl699ZeVb+Rhf4qQy831XME1asFctWmi11jAWS6/fnIuXAcJ8yzB+H5YykyqMKvLu2jEt5edX5Y20U6Cx+JOo7jVMA7UcdxnAq4Ot+LaMRTTa9zVW92bLUDzkdn3oNYGr1YPWIL0jVSvgxV/UbWl+9Is0cUTvXvHynD7by92vMQ6sOJ67z2IZCZXo6eeqbRY6o+1onqOL3/xfUec8qPmMezfjzXssi5Vka2dwE+EnUcx6mAd6KO4zgVcHW+lxKbz78jqnAjxDLYb9qUu2ypRtOD38i89kbWhC971GP3FFPhuxXOG+dt0JtNFT6mIteD6jOPZ3AE5uoX1Oh5kGNB9dzOa9EkwXsoB2XwGDZd5yyG0WH4SNRxHKcC3ok6juNUwNX5XkRMze3IOeUklqqOKx/Erk3Vm/VmED5pJKi+fK3Ouu8Oo/atFlXtjrQ8rI9sfwgyzQextHVMo0ev/faI3BI5Z7l5YvfahNYX4iNRx3GcCngn6jiOUwHvRB3HcSrgNtFXAJ2VczNGe2f7tDfZR8z2W6bpbaKxhBtdMFmqQEtkO+2aDGUaHCljEZkhTvVsohvVI/GRqOM4TgW8E3Ucx6mAq/O9lFj4EelqdZczhZiYhMRmWlHlj9W7fM+NPINuhSovc3Gy2lsjclfwIuSYiYH3wOVHhkCO3U855GpHZmE1AT4SdRzHqYB3oo7jOBVwdf4VQFd756vUo0qZpvfGl6Gauy2ynXJX3x5zetLcwKU4Yit2sq4bItvL6ntXRyV0ED4SdRzHqYB3oo7jOBVwdb4X0ezqLOtHzzmD82N5SVmGXv6OXO6ky6E6GwskCBG5K6AKz2CKlkgZLifC4dmLke00F/RgfCTqOI5TAe9EHcdxKuDqfC+l2VXbmGpPYtu7ZCXOroBDGAahd6cKH4P14xz3TZHtrDdX4mws7UGPwkeijuM4FfBO1HEcpwKuzjvdQnsD5pvdPLFDNGKViKm/Xf04GFQfiypgUD3VfFI7ZUKPxkeijuM4FfBO1HEcpwLWK9Ukx3GcLsJHoo7jOBXwTtRxHKcC3ok6juNUwDtRx3GcCngn6jiOU4Ee14ma2flmdned/Teb2Xu6sk5OTrl9zCyY2ZTurFNPwMxOMLOn8XtfM5tpZmvN7KLurFtHYWYzzOx93V2PjqZpO1EzO97M7jGz1Wa2ysz+YmZHtHVcCOG0EMJVdc5btxN2csxsnpltNLN1ZrbUzH5sZkO7u169gfIflxDCXSGEfVHkEkm3hxCGhRCuaOB8083sITPbkP4/vU7Z0Wb2azNbb2bzzeztpf3/bGZzzWyNmT1oZsfvwC12GW3dT+SYAWb2pJktLG1v+Dm20pSdqJkNl3SjpG9JGi1pD0mfU8U0rmbm01zbz1khhKGSDpN0uKRPd3N96tLsbdyO+k2S9HiD5xwg6beSfipplKSrJP023V6L/1YyeXOspHdI+h8zOyA911GSLpf0ZkkjJP1A0q/NrJknbEbvpw4fk7ScG3bgOSaEEJrun5KPtSWy73xJd0v6mpKc2XMlnYb9MyS9D2X/IukbShJy/VLJrN5tktbFruH/smc5T9Kp+P3/lPxxC5L61Xnmd2NfkDQllUdI+kn68s5X0iH3kbSTknzpB+K4XZQkV9s1/X2mpJlpuXskHVyq58clzVLyh7ZfRz4HXGeCpF+l9V8p6dvY915JT6bv5B8kTSo9gw9LeiZ9X+9Mt61P38O3SjpJ0sK0/G3pO7op3T+1jXr9naQXlE6eSbc9L+n1NcoOUdLhTMW2qyVdnspvlXR/qXyQtHuDz+hYSQ9IWp3+f2zpPfmKpPslrVHSYY1O9w1U0nmtTNv4AUljG7he3fuJHLNn2lantT7z9j5H/mvKkaik2ZK2mdlVZnaamY0q7T9K0tOSxkj6qqQfGNeJeHnZOUr+Sr1T0gWS7g0hDA0hjOyU2vdCzGyCpNNVXOyhvXxLSUe6l6QTJb1b0j+EEDYr6ZzOQ9m3SLojhLDMzA6V9ENJH5S0s6TvSbrBzHZC+fMknSFpZAiB2S87hHQkdqOSzn+yEu3ounTf2ZIulfT3Sjr/uyRdWzrFOUrexWkhhFen2w5J38PrWTCEcEp6jgvT/bPN7EYz+0SkegdImhXSrz5lVrq9zFRJW0MIs7HtEZS9WVJfMzsqvef3KvnjtSRy7QwzGy3p95KuUNJO/ynp92a2M4q9Oz3n7kqylLaaKt6j5N2YkB57gdIMpWb2CTO7MXLZtu6nFt9S0l4bS9vb8xwzmrITDSGskXS8kr+AV0pabmY3mNnYtMj8EMKVIYRtSobcuyvpJGuxKITwrRDC1hBC+aE5bfMbM2tRMvq/Q9KXd+Qk6Qf5NkmfDCGsDSHMk/R1Se9Ki1yT7m/l7ek2SfqApO+FEO4LIWwLic17s6SjUf6KEMKCTmzjIyWNk/SxEML6EMKmEEKrbf0CSV8JITyZduBfljTdzCbh+K+EEFbtaP1CCGeGEC6P7B6qZORHVqu4uDHLrqlTdq0Sje1uJc/4s5I+UOpYYpwh6ZkQwtXp93atpKcknYUyV4cQHgshrJf0GUlvSd+NLUo6zylpGz+U9gMKIVweQjgzcs227qeAmb1RUt8Qwq8j52r0OWY0ZScqSekLeX4IYbykA5W8wN9Mdy9BudYEXDGHx4JOq+Qrg3NCCCNDCJNCCB/Sy/96N8oYSf2VjORama9kRCdJt0sanI6AJkuaLqn1RZ8k6WIza2n9p2TEMg7n6ux2nqDkj3etUe4kSf+Fuq1SksRuD5TpzPqtkzS8tG24kg6xvWX/UdI/KBl9DVCivd1oZuPUNuNUbF+p2MZS8TnMV/JOjFGigv9B0nVmtsjMvmpm/Ru4ZsP3bmZDlGiusWiH9jzHjKbtREkI4SlJP1bSmbb78DZ+O+1jffr/YGzbrYHjVigZbXB0NlGJDUqpVvFzJWr5eZJuDCG0vrwLJH0p7cxb/w1ORzqtdHa7LpA0MeIYWiDpg6X6DQoh3NNF9Xtc0sElk9bBqu2Ymi2pn5ntg22HoOx0Jc9+dghhewjhFkmLldg622KRiu0roY1TJpT2bZG0IoSwJYTwuRDCtPRaZypR/duirfsh+ygxxdxlZkuUmJB2N7Ml6R/u9jzHjKbsRM1sPzO72MzGp78nKPmw/toBp18qaXybHjenJiGE5Uo+ineaWV8ze6+kvRs4rrWT/JKZDUtV3Y8qcSa0co0Sx8Y7lKvyUmLSuSAdpZqZDTGzM8ysrprVwdyvpDO5PL3+QDM7Lt33XUmfhId7hJmd28b5liqxDXcEM5Q4oi4ys53M7MJ0+23lgqka/StJn0/v4zhJZysZCUqJQ+cMM9srfdavVWJ3fEzKQgTnRepxk6SpZvZ2M+tnZm+VNE2JLbmVd5rZNDMbLOnzkn4RQthmZieb2UGpar9GSecaW0i6PfdDHlPSiU9P/71PSTtMV/KHcIYafI6kKTtRJcPnoyTdZ2brlXSej0m6uAPOfZuSvyxLzGxFB5zvlcj7lYSIrFSi9t1Tv3jGPysZyc5RYnO7RonDSJIUQrgv3T9OiYOjdfuD6TW/rcSx9aySKIAuI/0jcJakKUo8tguVdPhK7Wv/oUQVXaPkXT2tjVNeJumq1ATwlraub8kkkksjdXtJiePq3Uo82+9VYoZ5KT32UjO7GYd8SMkq8cuUOMD+KYTQOtr6iRKH2QwlndkVSkbZT6X7JyiJeKlVj5VKRpAXK3k3LpF0ZgiB39nVSrTKJUo88q2q9W6SfpFe80kl9verI/UvE70fSyYxrEvrtzWEsKT1nxKzy/b097a2nmMMzyfqOE7DmNkfJf1LCOHJ7q5Ls+CdqOM4TgWaVZ13HMfpEXgn6jiOUwHvRB3HcSrgnajjOE4F6maUMbM2vU59+uT98PbteVhXbCr7jjiyjjnmmEwePDiP8R4wIA/17Nu3dpKZnXbKp1cvX54nbbnzzjvbXY+OIoQQm+dfiUbaqwOukcl85nwPjj46n43J9urfv3/N8jznoEGDMnnFijwyhu3F94zytm3bGryL9tGd7TUZ8jzIIyPlWwaWNjCS9iTInH/E+Tghsp3h8rtDZug8z7ke8jzIcyH/TUXWqUPorPaK4SNRx3GcCngn6jiOU4G6caKNqBvxDHQ59a4xbFiub5xyyimZfOihh2byaaflkz+efjpbQaFw3qFD8/wjO++cZ96iSkhVkarojTfms9JuuOGGTH7++eej9a5CT1Lny+07fHien4Htcvjhh2fya17zmkxme730Uj7xY+DAXO8cM2ZMJq9fn+uBI0aMyOR+/XLL029+85tM/vWv82Q8zz77bKGuHRUD3Z3tNbKB87Twxx6lnYMgfxLyKZC/A5nDKmQm2B+fAnMhLrkMPz4MeQxkTpp8IHJdKZkH1gG4Ou84jtOD8E7UcRynApXV+VL5TI6d9wMf+EDh9z775BmsqGJTDaSqfsghh2Typk2bMnnIkCGZvG5d7uZbsybP17phw4ZM3mWXXWqW33PPPWuWl6RPfjLXhxYtWqQdpSep8+eff37h93777ZfJNI/MmTMnk9le06ZNy+S1a3N3Lz31W7fmKTo3bszTldLbPmpUvrgBzzNuXO4SXrVqVaGun/nMZzJ52bJl2lGapb1GQm6JlCmv0EYH+JNH4sc7ITNXEnJn7XZ/Ll+AIpdxPYHzITM90E2Q+Rl9Khc/Xbr7P0Oukq7N1XnHcZwehHeijuM4FehQ73zsXB/60IcyefTo0YV9LS0tmbxly5ZMpmpP9Y3B8+ecc04mL1mSr6NFlZDyAw/krsHXv/71mfz443niagaHT5w4sVBX1ukf//EftaM0i3oY413velcm03MuFU0ffB5U7VmGavsJJ5yQyVS92e704D/xxBOZzAkXs2fna5JxwsWuu+5aqCvr9y//8i+Z3F6vfbN451siZZiTrmxk4kJC32bO+fdA3gXyc7k475u5/D0UuQHy41xMY0YuHntYLt+DZtkbVpX/KtWVgQSv4dJ2K9UuXJ13HMfpQXgn6jiOU4G6c+cbIabOT5iQT6odP358Js+dy8mzRU8uYdD12LH5asjPPZfrG/QI08u/cmU+/mcANtVJetcZ+E2ZpgBJ2m23fD02qrxXX50v59KIeaM7idVv993zCdFsr4ULFxaO5+QIzn9ne9GTvmBBvrjj4sWLM5ledar/zzzzTCYfdliuEzLvAVV4yps3by7Uler9eeflS9pfc8016inEppOfCJlqcHmdloJeS7WYn+HvIUPN/wds5iJJIyF//D/wAwH893DpQqxYPx2bF6vIZMj7oa5PYTuv3aLmwEeijuM4FfBO1HEcpwKV1XmmIiNTpkzJZAZNcw60VFTl6HmnZ5VlRo4cmcm33HJLJh9//PGZTDWc16O8dOnSTGagPueGU1WUiuri9OnTM5nqfDOq8CRWv9ikB7aJVHy2NMXQTBArc9tt+STqT30qj7p+4YU8z1osvR7VeZpc2F7ld4vvHdvr2mvzSeHN3l5bqavDusQsdd+HXM4uVzBI8XWeA3k/yFDtb8dC2J+E155rXAve9sktuTzvVJTB9r75/Bg9UqorowwKZgik22tZoKbDR6KO4zgV8E7UcRynApXV+RgHHHBAJnOOe1k9pBrIuepU5aiWUX2jt/ePf/xjJnMuNo+lZ5/XpfefKiHVxjJHHnlkdF8zE0tdeOCBB2ZyLGWdVAyMp0eeQfU08dCbT0//jBkzMpkqNa/NSA7Wm6kOaXIpv1t8h5iqr9kjKAowmD0PetBSRNU/jCLF7AHSttgP3jYD25nBPm+KQrD95in4cW8uzqPpAVa+Y6DCP44i/VWEJor9IT85SE2Nj0Qdx3Eq4J2o4zhOBTpNnd9jjzzFdmzuexl6zDmHnSo21UmaDB599NFM5vx8BtUzwJtefqrzNBHw/FJRvWRAP1VKqqM9CeYJYD4DzomXim1Bjzm98LEoCz7PWbNmZTLTElLlj7UXg+i5csHUqVMLdeXKBJyrT9NDOUC/6WDwCywxL2C+e8ibQbkhK2FZHniiIatzeT0j3WPR7OgduN7dZqS2H5EHyBQy3g1ANntYIXQvzBNvXqMCyLxXnGTQ5E3kI1HHcZwKeCfqOI5TAe9EHcdxKtChNlHaFgntm0xOIRVtmbF8ooQhS7Rn8by0UTKchbYwJhPheWjPox2uDMNnDj744Ex+8MEHo8c0Awzpoc2RcAZXOf/rI4/k80zYXrSVMsSpkfYqzzRqhe3Fd4vnZAhW+d1i8hO2F8O5HnrooZrXbhpg79QRkJFAZD02w+wpSRqNnQV7KYdPnAXE2UuwxzI6qh+SgzAAjqbLEZARBSXBJbJJRbiKKL/+fvNzuWzzbQZ8JOo4jlMB70Qdx3Eq0KHq/F577ZXJnM1CFZmqolRUL6k6UpWLzRyKzWriORkOw+2sE6/FkB6GZpWP4aworhDa7Oo8mTQpXy8iFoZGU4wUb6/YUiEsH5spRPWf7cXtfAdis6PKq7PSrMP2mjx5ciY3vTpPHsvFQcgsQjV6ZJ3DC3OzuPgpow4R+jSkJZdp+MHmQgeyBTJVc7ITzBPl3KdciGYpZBoJOaGqWfCRqOM4TgW8E3Ucx6lAh6rzXBKESUeodtc7hjNMOPOHqiJlmgzoKebsG16bKh09xfQOc5mMsnrIa1Auz5TpKXAZELZXLDJCKrYXZxfF2juWF5btS3NII+1FdZ7txTqUj+e7wly3PYnBUOHppX4JX/GgOu7rtcgnOhqWqjWQOUHqYMj0tpcmGmWwMynkMcXnPwoXeF5FJkOmaQDpRF2ddxzH6W14J+o4jlOBDlXnGbxNr+maNbkCUE5AwvygPIYqNj3vVA9ZPpb0gl5nBmNT9aM3mXUdM4b+Qmn16jyUmZ7mQw45RD0RqsL0lvMZlJdIYX5QqstUw6l68/hYe/FZxtqLS4402l48F+t36KGHqidClXoxhz9IzLlTSZ3nWroDkRtnIrZzigJbe11k+16QqZLzy54MeRlUeJ6TKrtUDLDn6iW7qrnxkajjOE4FvBN1HMepQIeq88wpSe/riy/mobf0nEvSDTfcUPN4qpf0hFMNjAXMU82kWYDlqVpStX/66acz+ayzzirUNTYnvJxzs6dA1ZzPuF57/e53v8vkciB+rXPxmVO1p8zyVLtjpgCq9k89lSfDPOeccwr1iL1D5QkfPYWCx5t6OoZCWwqFilPv2ZJ8Y9kJ0BoQU+3Z6jSg0LPPZUpYVZ5z4Z4q0A/5AJjAdBkv3oSrufhI1HEcpwLeiTqO41SgQ9V5qm5Uuahel1ebfOKJJzL5hBNOyGQGZhOqdUxVRxWUZXjtevVoZfbs2ZlcVld5DD3QI0aMUE+E89F5PzRVlCdKsL2OO+64TGZ7MTqCx3OuPb3qsRU3Y+1Fme1VVtNZD95fvRSHzUwLb4+ucLzK5a9mgGrDqfPPQeaqIdMgPzIyl09tyeUH8HocCn2eVgXO7adqr2KWRbXwNWDFmeuvCaPtfSTqOI5TAe9EHcdxKlBZnaf3mx5yqlJUv+gllYqrccZUbKrVVPG4natvUj2MeWh5Ldb12WefrXl+qaia8r6pRjLCIGaS6E7a215U7aV4e/HZMFohFmDPduE1WD7mtY+1F5+9FL9XRiU0e3sVltnk14oAe0apby6pyAFucmaCoNrOVHNb8gUfdNCSXH4E18jX8ZX6QoWnd57qPNe/LWQ3mKQiWAm0cDIexIpzCNiNKe99JOo4jlMB70Qdx3EqUFmd53zlWOZyql8MwpeKKhdlqu0MuqbKxQiAWCZ8qoRUG2MqK9XVsipLGKDPe+UCeFQ1mwW2VyzlHduh3F58zlTPOU891l58ZrHztLS0ZDKfK9V5qvxsr7KXn23M++B2LoDXlOo8b4mR7TtFypSa9CWouc8xhx0i7wMnwB+UixuhzvO8NJpsQ2DKHKySt3YkCkEd352qOSfhS8WJ+Ax4wbUH3Yf6NckQsEmq4TiO0zPxTtRxHKcCldV5Bi5TDaTqxjJcC1wqqoH0ci9dmi9VxfPGFqejCk/vMMvQRNCIt3bZMoYkF9XIWEA5F1prRnWebdFIMDqz10tFlZfPasWKFZncSHvFFgeMTZTYkfYivFfWj+313HPPqemgRYnu9ZGQaXEpf9Esx/UekS5+A9VoBMgwxn0sHm0hUwQmABgXvaeJAdfdSnW+nAuPOe9oWckzNhad8LWDebocH4k6juNUwDtRx3GcClRW5+kRpapH9ZALuTHVXPkYqm+EqhjVOl6b16PXnmo+z8NjmUGdC5o9+uijhXpQjYzN1S8HfDcbrGss0mGfffbJZKaaKx8Tm9seS2cXm/jQSHuRnXfeuWZ9HnnkkUI55jTgZAw+A7ZpU8KodQag08rCIPXygu+cb0/TwMhcpBa9bJdc5ghrKV7rzVS1cc7Cso6cDIBF64e1YPsTKrI/ZNoS0Ett4Xn5PLoRH4k6juNUwDtRx3GcClRW56laxbK9U62aNWtW4fhddsn1h1hm+1h2eq4LT9WSx7IeVDOpTlK9Yyb3OXO4XJZ0zDHH1DwvVV4uvNeMMNie9001miou1WAp3l6EJhe2XWziQ6y9YpM02NZsr7Kp6OSTT85k3t+TTz6Zyc3eXoXgeT5uBn4wfX3ZY011nkOmkblYmGLwWC7exNQRCO7fHlltbivrR3UcnxE18J3+VKzq5qPxg90E58vXXkxBWh3Z3gX4SNRxHKcC3ok6juNUoLI6f9hhh2UyVSbKnJ9Mr7YkHX744ZlMLy1VzUbm4ccCvGMB5ZSpHnINeWZfL9ePaicnCbzqVa/K5F/84hdqNvi82UYMOqfKvmoVlxwr3h+fB9solmaQ7RXzvLPdYxEXPM/BBx+cyatXF3U6eu7ZXkxxyOfxy1/+sub9dDmMZufqcvBMD0T1RiCopfjGShu5gQvMI//dPJoAKPPaz+Ti3th8FF6P+0bm8u5Q+RlzszPksga+6GH84EE0DdBkwJT53YiPRB3HcSrgnajjOE4FKqvzDE6nerjHHnn+a3p7ywHRVJ+ZBi22pjlVRXrqqR7GAsqpBlJ9ZflJk/J021xjXZL+93//N5N//vOfZzKfwZIlS9TMMKKBz5gmF3qs67UX1edYe8UC70lsTXm2F6NAWH7y5MmZfMMNNxTO+8Mf/jCTf/3rX2cy24s5GrpVhScMikemeSEQfhM83v0Q5V5O3ti3BfswB72gCjPtHIPZ4fXfEydmPMP9kA3X4hQGauZU4ScXq6pFf8GP0yCzl2I6QL6a3TiP3keijuM4FfBO1HEcpwKV1fkf/ehHNbczEHuvvfIU1uV0Y3//93+fyfTc83iq8FT5GThOVZFyLHM+VcLly3O95eij84jf73//+4W60gQQy9jejFClpoobM42wvcrp/N74xjdmckyd5/ViqfNiqelii8tR1aYKzgkQ5fbiKgOsB00arGu3QpUaartaICOwfXJhonpO2SDBqffLaGliSgTq52+G/PFcnILNQyPyWqjUG1ERWiSWQn6Z8WQyZHrq+Qpyfj3rXQ5L6EKa5A1yHMfpmXgn6jiOUwHvRB3HcSpQ2SYagzYoJh0p528cPXp0JnN2DO1htIHR9sZjYys70vZJu195Fcta558+fXph30033VTzmGaEz6ORMrQTPvZYnoWCM32kYqgRbaK0cTJpCe3TsdydTExCYqu/0o5JOytnU0nF9mrENh5brbZLoH2Pj5xfKBJ/zouc5ujSb4YgFYZMzOV5BuRbcvEdker9EfLaPXPZ5ubyAiwJEuAyWMjXstz7zIR8JuRpkJEgRYyY8xAnx3Gcnol3oo7jOBXoUHU+tkQEc0cef/zxhWNiqlwsDIXhN/Pmzat5LGff8FjOqOL5OUvmhRdeyOQTTjihcF6qh92q+jUA6xdT7WNqLeVye8WuwWdI1X7ChHxZyfJKr60w3yzPSVMCz0+ZM8ROOumkwnlj7RW7B9IlbToSMlfi5HodrN4BuTjgN7lMw1R5gZ3tb8SP2ZB5e5iltOftufyzSSiDGU4fZ6gUVgEN7E0QprWZzX4k5HIqV+YXpapOKxBnLDG+qnY30iX4SNRxHKcC3ok6juNUoEPVeapAVOHJvvvuW/jNnJ305PJ4rj45f/78TGYiiXHj8iUF6YWnukZ1PubNp8wZL2Vi+TO7U7Vvr0eeHm+q8GTatGmF32wvPmfe95575i7b559/PpNpQuFsM0ZixGZRxerNnKPjx4+veQ9S8f5o4om1Y5cwPCJzaMO0q/BM144tKU70kVRcgpNq8YGQMXtpLt37K3LxyPyzU+Ep45ENgy1hLY5dztw02K6/K9X1PsjMVMLnwcmBIyHXXii4S/CRqOM4TgW8E3Ucx6lApwXb00NL1ZyrM0pFFZ7JLqh+zZ6duxUZkE9Vk+WpHvLanADAQHHWgSpkOUcm91GNbEZ1PqayxpZdYXmWmTp1auEa9Jg//vjjmUwzCFfTZFIZRlawXdhejNZYu3ZtTZntRRMNJ1+U98XMFaTL247eZXqd6WnmajpY9ZKGB9Z6+xdL16Da/hXIXCGUEfl4hP8ErzpHW6zeblgGhJ3JWshcKVR7QS6r88xlxEQjiAAoLBXCVUc7rSdrGx+JOo7jVMA7UcdxnApYPRXGzHZYv4mph+W52B/72Mcy+dhjj83kkSNHZvLcufmkXHpmqa4xJ+ioUfmyhvTgU91jQD5V+xUrcvfhlVdeWajrXXfdpY4ghNApbuC+fftm7RXLkxkLqqeKTNW83F6XXXZZJjOXJ+ewx9T82Px6BtszkJ5txOVm6OWneaecT/T22/PI8Zh5Kfb+c3tntZcdiO9rcqQQlgERPOQ6HTIXlR2iIjMg0zRwYy6++opcxlR4vQvyPMjUyGdBvgby/SPxgzlKJ0Aur6TzV8gHQ/4b5BbI9NRDzQ/rOqe9YvhI1HEcpwLeiTqO41Sg09T5qtCLTy98bFXKmPpKby9lBoH/5S/5MoP04HcWnaUe9unTJ2uvRuaExwLN6y2ZEfP0c448Pfpsr9gSIrE8C7zWwoULM5ntRa99ud4xk1IjKnxpe+eo8xPwfdGDTU8z1/dY9f/be/NwO6oy//f7koSEjCchE5mRMWGQSSKjTCKjIDYiTkTEK9r8sL2orV6xUbEVbnejSNsO14FWWhpHJlFbIc2kBoGAzAFyMhMg4WQkBMK6f1Sdqk8Ve+2zkzp7n4H38zx58u6qVVWralWts95hvQsyAxF2gVxeqYau9L/mIhf1PBpyG+QjITPmHxnv9DfIt0J+aUf84GNlfWg7kKQJkHkRBt4zyCKyjGiz2iuGj0Qdx3Eq4J2o4zhOBeqq847jOE59fCTqOI5TAe9EHcdxKuCdqOM4TgW8E3Ucx6mAd6KO4zgV6PedqJm1m9lxPV0Pp3HMLJjZrg2Um5GW7cFEaN2DmR1hZo/j9x5mNt/M1pnZhT1Zt+6iv36LLe1EzexwM7vbzNaY2Wozu8vM3tTKOjjbjrdf91H+QxFCuCOEwLVzPi3pthDCiBDCla89w2vOt5+Z3WtmG9P/96tT9idmtsLM1prZE2Z2XqTcF9J69uqOz8y+bGZ/M7NXzOySLsoebWa3pe9we6TMx81soZltMLNHzWz3WuU6aVknamYjleSO+aaSSWuTJX1RhcVYeyf9YaRTlb7cfr2JrXiXpkt6uMtSyTm3l3S9pJ9IGi3paknXp9tr8VVJM0IIIyW9XdKlZnZg6Zy7SDpThVTQvZYnlfzRubmBshsk/UDSp2rtTP+gfEjSyUrSZp+i4spQryWE0JJ/kg6S1BHZN0fSnZL+RUnCroWSTsT+UZK+r6RBl0m6VNKAdN8uSqbtrkpv9hpJbTi2XdJxqTwzPffZ6e9TJM1XkmDrbkn7lo77RyXZvl6SNLBVz6o3/uui/Rppg0+mz3KNpP+WNAT7P5W27XJJ5yqZbb1ruu9kJcnQ1kpaIukSHDcjLduStlGSyO2XSvLCr5J0FfadK+nR9P39naTp2Bck/b2kBen7d3u6bYOS/OxnSTpK0tK0/K2StiiZCb9e0u5d1Ov49LswbFss6YQG7mmP9Nm/q7T9t0oS7mXfT4PP6O1KOv8OJYn4Zpbeg89KeiR9Tj/sfA+U5Pa/KT1utaQ7JG23le3zE74fXZQ9TlJ7adt26Tt27FZdtxUvX1rBkemLd7WkEyWNxr45SlITfFhJroOPph9U54yqX0n6jpJsieOVLGjwkXTfrpLeqiSFw7j0Bf16qeGOk3RA+mKdkm7fX8nCA7PTa56Tlh2M4+Yr+XB2aNVz6q3/umi/RtpgnqRJSkaxj0o6P913gqSVShayGKYkLSU70aMk7ZO+4PumZU9P981QizrR9B15QNIVaT2HSDo83XeaktHQTCXpQz4v6W4cGyT9T3rvO2DbrihzlNJONP09V9J5+H2TpM9E6vYJSbeUtt0k6aI69/MtJWuBBiWLhA7HvjMlXc/vp8FntLuSPwxvVZLj5NPpc9ke53oo/abGSLpL0qXpvq9K+nZ63CBJRyj//r8l6VsNXL9qJzotfR4fV9KZLlSibdXtzFv9Ic6U9CNJS5XkYLlBSe6WOZKeRLmh6c1MTPe/JHRkks5WYi+qdY3TJd2P3+3pg1gq6Shs/w9JXy4d+7ikt+C4c1v5fHr7v1j7NdgG78PvyyV9O5V/IOlr2Le7Sh1M6dxfl3RFKs9Q6zrRQ5SMQF9zLUm3SPoQfm+npIOanv4Oko4pHbNVnWgXdbtY0rWlbdd01aEo+cNwuJJOf1C6bYSSEfMMtF2jnejFkq4rPYdlnd9deq7zsf8kSU+l8peUmCRqtnuD16/aiR6atsvNShJazZD0hKQP1ztXSx1LIYRHQwhzQghTlIw8Jin5KCTkuQ4hdKYuH67ENjRI0goz6zCzDiWj0vGSZGYTzOxaM1tmZmuVPEgu+yVJ5ysZGczFtumSLuo8Z3reqWmdOsFSXU6s/RpsA+Yx36h8mbZJKj5n5m+Xmc1OHQHPmdkaJW1ZPncrmCppUQih1grn0yV9A+/RaiVryU1GmWa+S+tVXLle6e91NcpmhBC2hBDuVLKU/EfTzZdI+nEIoX0b6jFJaL8QwqtK7jv2HBYp/97+XyWj1t+b2dNm9pltuH5VOhMPXh5C6EifwXdUXEfgNfRYiFMI4TElo5q9uyi6RMlIdGwIoS39NzKEsFe6/5+V/PXYJySG8vepuBiilHx408zsitJ5v4JztoUQhoYQfspqbtvd9X9K7ddIG8RYoeKiEdNK+/9LyYh3aghhlBKVr6X5IlOWKHmHajmGligxL/Fd2iGEcDfKNPNdeljSvlZMIruvGnRMKTFBdGYlPVbShWb2jJk9o6RtrjOzf2zgPMuV/EGRJKX1mapkNNpJua2XS1IIYV0I4aIQwhuU2FX/bzM7tsH6dxePS9qsYlt12W6t9M7vaWYXmdmU9PdUJWr5n+sdF0JYIen3kv7VzEaa2XZmtouZvSUtMkLJX+I1ZjZZtb1u65TY3o40s6+l274n6fx0pGNmNszMTjazEZVvth/SRfs10gYxrpM0x8xmmdlQSf9U2j9C0uoQwiYzO1jSe6reyzYyT0mH/7X0XRliZoel+74t6bNmtpckmdkoMzuzi/OtVHG5oirMVeKIutDMBpvZBen2W8sFzWy8mb3bzIab2QAze5uSdvxjWuRYJX8Y90v/LZf0EUn/nh5/iZnNjdTjOkknm9mxZjZI0kVKBkD8Y/L3ZjbFzMZI+n+UOBllZqeY2a5px7smvZ+u17lOjh1kZkOU9GcD07YZECm7XVp2UPLThnRGMaQa8H9L+rSZjUjf9f9LhRWparCt9odtsFdMTh/yMiXG52VKhsojlXrnS+XpXBilxIa5NH3A90t6d7pvL0n3KvmI5ytpONqW2pV758cocQ58Of19gqR7lHgEV0j6maQRW2sLej3866L9Gm6D9Pclkn6C359Rou7X8s7/nRK1b136Ml/Veaxa752fJunXyqMQrsS+9ytJ9N4ZRfCDWu8ytp2fvnMdkt6lrh1Lt0j6XJ267Z+2wYtKHEX7Y9/nlDqelDj+/je97tq0zlGbX422+74SDS5W/h1KvO9r0uvsVTpXp3e+Q4mTcmi67xPp/g1KvvOLcdy3ldrQI9f8UfqM+W9Ouu8ISetR9qgaZedi/0hJ16bv2xJJXxCiHmr983yijuM0jJnNVxICtKqrsq8XvBN1HMepQL+fO+84jtNMvBN1HMepgHeijuM4FfBO1HEcpwJ1M8qYmXudmkAIoSnB4r2lvYox37WJOTRjxzZyznIZ/ub1GpFLde0f7cXISYtsJ6xdLGIzdp6BkTI856DSuTikeyUivwx5c+0qNau9YvhI1HEcpwLeiTqO41TgdZ9s2Ol+ttsu/9scU8OpOm+tCs/zv/pqrmcOGlTWD2vzyiuv1JT7fcz0FsgcPo2IbOfjfzWyPabCk8GQN0GeUCpnEZlh/S9Apprf0ATR5uAjUcdxnAp4J+o4jlMBV+edbodqeCNe9RhU1WPb652faj9V9YEDa7/2W7ZsqSn3S/hoaQWJeepj6jIf04uQaRmhCh8zF0jJWgGdUFVn9ljWg824OlK/FuAjUcdxnAp4J+o4jlMBV+edbodqdCNQ1aaqHlPnY5RV8FGjRmUy1f7Bg3N38apVueuXan6/V+cJ1Wiq83z8sSB3quobITfSdBtKv98KmT0TU1f/GHIb5I4GrtckfCTqOI5TAe9EHcdxKuDqvNPtVPHId+ex/L1hQ6470nzw8su5ntposH6/g8HwtGKwd4h5xan+c0jWiDpfHsLxXH+FTE89A+9jkwFajI9EHcdxKuCdqOM4TgVcnXe2mdgc9tjcecr0fnP++tZ65En52LVr19a8HtX2AQNyHbLfz50fBple9aGQOayidWMd5OcgM8CeancjlL3zcyFzjvxOkFnXrb1ek/CRqOM4TgW8E3Ucx6mAq/NOt0C1eMiQPHo7Ns89FlTfnSo1r7fTTrlOuHLlykxm4D099f2eUZB3gUw1n73DxkiZSHb5bYLmg89B/ibkGZBXQO7B4aCPRB3HcSrgnajjOE4FXJ136lIOYKe6TRWeMo+hJzw2H72KR55sv/32hd9Dh+auXAbbs379LrN9eb4ALRRtkIdD5mMbCXk9ZItsr8K00u83Qp4HmUH4DLbvJdYXH4k6juNUwDtRx3GcCngn6jiOU4FeaxONzXSpYj878sgjM/n222/f5vM0yrBh+RQR2uT6EuXcoLRrxmyizMu5aVMeDxObsRRj9913z+Qnnniiy/LlZT9i12Y52kRHjMiXvezo6Ojyer2S4aXfayP7dojISyHTFtmAHfQTkK/ounhx2Q9JehIybbtjIHdA5v1wRlWL8ZGo4zhOBbwTdRzHqUCvVecZbtJI6MmVV16ZydOm5bETd9xxRyYfe+yxmbxw4cJMXrJkSUN1iqmB5FOf+lQmn3nmmZl8zDHHNHSN3gbVdKmohnOGD1VnyjS/8Fz/9m//lskMRWJ7HXLIIZn8yU9+MpPXr6+tW/K6UlE9j+UT/Yd/+IdMfvvb357JJ598cs1r9HraSr/XQF4JuQMyX3+q/zwXEoKcg800rk2GfCrkG8t17GRB6fdMyE9DhuVnIOqxO4o8ErtGC/CRqOM4TgW8E3Ucx6lAy9X5srd3a9X2N7whX/pv3rx8WsNPf/rTTL7vvvsymeonV3b85jfzrAann356l9eV4ir8+9///kw+66yzMpnq5J577tnQNXob5fbi75iHndsnT86VvPvvvz+Tf/jDH2by448/nsk0Eaxbl7tcv/71r2fyeeedV/O69fKJ8t1673vfm8knnXRSJtPcsMsuzMrRy4mt0Fne1xE5HrOAZmDzCuQN3RXbX4I8AvJiyMxvEqXsUf8bZOQp5WKkh0OeAvn5Rq7XJHwk6jiOUwHvRB3HcSpQWZ1nEDNVptj2esHyTCAxceLETKZ6/o1vfCOTL7/88kx+8MEHM3nGjBmZzID3Rx99NJOPO+64TF69enUmf/WrX83kX//614X6UdU87LDDMvljH/tYJlPlf+CBBzJ52bJl6s0MH55HLvM+G03KMXZsHjnN9rrssssy+eKLL87kv/zlL5nM9qKn/qmnnsrkE044IZNffDHX9b7whS9k8s9+9rNCnfgOHnTQQZl89tlnZ/Jzz+U66/LlyzO50YiNZsMPtGBMejNkLtdRBslFJiNhx44oQqPMHpDpqJ8VqROtBXSoF9TrvSE/hjqUrGOr8Juq+uERuQMyFyxtNT4SdRzHqYB3oo7jOBWorM7H1L3Y9iOOOCJ6rksuuSSTqVrRG0vv8JQp+aD/4IMPrnnOHXbIJwZTvbv55pszec2aPCL5/PPPz+QPfvCDhXMxyHvHHXOFiKrfn/70p5p1GjmSiRp7H7EoidNOO61Qjh5zqucPP/xwJn/gAx/I5Jinfvbs2TXLUJ1va2vLZLYXTQ+f/vSnM/njH/94oa4vvJBHZtOMxGiAu+66K5P32WefmtfoSaILWm6JFPq7Urk7c3EZ9PNRuWWr4JHnWzoOMr9mesu5OsjjkGkuKMx9f0suriqmqi2YJabklrDCFHmuCMJ4F0YJtBofiTqO41TAO1HHcZwKNC3Yftdd8/BcqmXvfve7C+UYhH7ppZdmMr3q9NRzeyzlGoOmqf5zFUqu8kiv7g033JDJe+xBX2UxAHvx4jy0+I9//GMm0zTwrne9K5M3b+7OZRG7n1mzcv8rJwmUA9vZXu94xzsymeov23vUqDzsmuYUthfbiKYEmmImTJiQyd/73vcymREd5QkNO++8cyYztd0tt9xSc/vxxx+fyS+9xJDyXgiX1miDfGSp3KG5+NZ35jLfxkmQOdWe2jZXEGHmAk7Hh+NdryC93lBknWSHU56qMRQyVwqZGqkHp0P0ZBIQH4k6juNUwDtRx3GcCtQdBe+2226ZTDX82WefzWSqyFQDucojg9nnzp1buMZf//rXTKY3m95UzoFmMDvV9jFjchcg1X+qmVQPqc5zO1Om0YsrSXfembs66fnltTkPn/e91157qdkwWuFtb3tbJq9cmStdU6fmytHo0aMzeebMPA8ZVdzyhAOqz4cfnoc+s114PQbu851gcD7zIVD9Z0pDeu3ZXjSf3HPPPYW63nrrrZm8aNGiTGakBFV4timz6jcLBrC/AzKTun8XMgPYN5+OH3Rf/7p0kTzIpTC3ncnsabigCs8RFtX/+yAzIP8VBt7kVjdtZER+3nVoaLG5CmYF3hIPZ9w+zQE7qefwkajjOE4FvBN1HMepQF11/qMf/Wgm77vvvpkc81wyaJpq1rhxedgu1TWpaBpgMDs9q3vvnQ/iGbBNLzBVPJoYyouX1boHzsW+9957M/lNb3pT4ZgLLrggk3mvjzyS59Wmd5llnnySq3A1h3PPPTeTaYrZuHFjJu+0U6740FvOdhk/fnwmUwWXilEJVPs5/52mC26naYVRFrw225Fl6MGneee2227L5EMPhSta0oUXXlizrjQhse0ZQcH7bBZ0sDNenvPAqS5vZpQ71z2ky3pG6SIo9xQ286vg9RjMzoB5fvGcI7+J0fk8EW0Vz0D+n1zcOFoFHkDW+jZsPxByu2qX6clMBz4SdRzHqYB3oo7jOBWoq87//Oc/z2R6mmMeXnrnqTZSLaN6JxXVfqrwPIae35jJgGoZ0+IxGoDz3c8444xMpoe2Hrw/eosJvftUD1sxF/vGG/Mlwaja0gTCSAI+D7YL58cfcMABhWvQLMHjqW5zBQFGWXA7n83dd9+dyfSoT5qU+2s//OEPZ/L++++vRqAph+8TTS5sL75bLN8sqBYPicjraU1hfrjpkFnmCyry/VykyeAVRMYvfrB2GVoMOHeelxsJe8Ozf8GO3SD/l2pTmn/CqRJMHBnL9MeJAQMiZVqBj0Qdx3Eq4J2o4zhOBaxe5vK2trZsJ9XRFStW1CzP4Hd6yBlMTc+vJJ144omZ/Lvf/S6TqZLH1MAqUMVlCjRmoy9n4ae6R/MBvdxUAxnUTfV//vz55SRg3cKwYcOy9mJQPD3TMWiWOfDA3B/KOetSMc0dVxlgoDuzxXcXVO0ZKcLF78rvMtuLQf9sL76nfMf5/B555JGmtNc4s6zC9NQ/WqOsVExTt3IsfjBSv2yg+wjko3NxNDzhNEw1Zf0F6NqDECFfTvPHh/wqg3gii+3tgM+TxVeE0JT2iuEjUcdxnAp4J+o4jlOBuuq8Qd2gR54px+gBpcpEFfKhhx7K5LJnlfOsn34691dSneI8a3rICYO0Y9ns6eXnwnGcJ82JAVTtpWLgOVVFeqapzlM9pEmiWeo824tqOAPvaWLg/fDZUDU/9thjC9dgG3FBOj4DthfNGHxmvDbbmvDd5EoHNL/wPqnal6/N+tHsxBwKrAcngTz00ENNby863hkX8Dhd9cwPdwjkhyGfWbrIvZBvhEyLC+5uEKxlbSjCuHhup6e+MI8ecjvkFzFsG1Jas3ITL0IrUkSdp+2ByfNXuTrvOI7Td/BO1HEcpwINq/ONwGz2VKkJ07VJxSB+BoJTzeJcaZoM6D1n0DQ95zQ3UKWj6sZ59JzHzbqVzxUzKzBQnfXgGuqvvvpq09XDRuAcd5ox+GzKKfyYUi6mqtNEw2fA58w25dx+vo9sLz57quOMKuA5paLnnWo/j+cxlJkPobe0l3aGzAz2zAN3QukYLFRXcPvTUpXfqkZDxaZGHZsizyABat30+PNSDOAvfl3Sag7paLrgp8b8d5yT356L4RVX5x3HcfoM3ok6juNUoFvVeacxQpO8h1vbXlSRGcVAz3n5/aCKHUuJSDNLbD37VkMVnvdKmfWmeaK3tFdBv2ZQPeevvKwidPW3Q6ZazPkrL0XkVhOzH1CmbQCTB5rVXjF8JOo4jlMB70Qdx3Eq4Op8D9Br1MP4eTI5tjKAFFd/ezu8P0Yi8H44+aDXeOdjMOJ9XLSUtBEyF49nLXpjM3IuBoN7NkHGKn7hJVfnHcdx+gzeiTqO41TAO1HHcZwK1F0exHl9Qjs5Z4iVKa8E2klvt48yTIv2UW7vU7CJlkdLSZMgM/nHxnLBXgYnPzIhC5urB703ffStcRzH6R14J+o4jlMBV+edbYbqbyxZSGyl1lYTC2ui6YJlenJ2VdPgbJ/a+YEKM39ekyGklVBt59opNF2w9yrlJm0lPhJ1HMepgHeijuM4FXB13qlLecYSZ/XQO88EHyzD7Zs2bapZphUwvy1Vdar29SIR+gzlGUsvQqZ3vg0yvfPM3cnHsU6tZRZkWoGo2jMSwdV5x3Gcvol3oo7jOBVwdd6RVFS76UWPrcRZ3sflXLgkCMvwvJs350ksm+UJbySHKGXS6wPvR0FeA3laqRxV4amQd4GM5UEKKj9V+FjO0e6kDTJfOy4dyubiaxOLNmgBvfxNcRzH6d14J+o4jlMBV+ed10A1uKzWUvWmSs5yseVBqDrzGgzI705oPoh53lm/3j7nvwDV2jbIQ0rlqHovg8xlQ7jMBj31XL5zOGQ2V5VHVh7CMcfpUsjspajCx+raYnwk6jiOUwHvRB3HcSrg6vzrmNhc8ZjKXg+qwjG1uLSCZsP17A5i16bpIWaG6DXwa2WzMNCcKrsUTxHXAZleeJ6LXn9aQ7rr0ZTPQzMBVXve64sRmUuFtBgfiTqO41TAO1HHcZwK1F3t03Ecx6mPj0Qdx3Eq4J2o4zhOBbwTdRzHqYB3oo7jOBXwTtRxHKcC3ok6TcXM5pjZnXX232Jm57SyTr0RMzvCzB7H7z3MbL6ZrTOzC3uybt2Fmc01s/N6uh7dTa/vRM2s3cxeNLP1ZvaCmd1sZlO7PtJpJWZ2uJndbWZrzGy1md1lZm/q6rgQwokhhKvrnLduJ9xXMbNgZrt2/g4h3BFC2ANFPi3pthDCiBDClQ2cbz8zu9fMNqb/79dF+Xeb2aNmtsHMnjKzI7DvPDN7Mv3mfmtmk+qdqycxs8Fm9n0zW5T+wZlvZifWKf9uM3s8fU+fNbOrzWwk9q8v/dtiZt+sV4de34mmnBpCGC5pJ0krJdW9Kae1pC/hTUraZYykyZK+qIrpe82s301L3op7mi7p4QbPub2k6yX9RNJoSVdLuj7dXqv8WyVdJumDSlZVOlLS0+m+oyT9s6TTlLTlQkk/bbDOPcFASUskvUVJqurPS7rOzGZEyt8l6bAQwihJb0iPv7RzZwhheOc/SROVTC79Wd0ahBB69T9J7ZKOw++TJD2RyidLul/S2vRBXlI69gOSFklaJeni8rn8X7e10UGSOiL75ki6U9K/KFnVfKGkE7F/rqTzUPYuSVekbfYLJbOityiZTV3zGi28z6mSfinpubR+V2HfuZIeTe/xd5KmY1+Q9PeSFqT3f3u6bUN6X2dJOkrS0rT8rek9b0r3795FvY5XMmvesG2xpBMi5e+W9KHIvn+R9O/4PSmt6y4NPqNDJd2jZOb9PZIOLbX1VyXNS7/Z6yWNSfcNUfJHYJWSmf33SJqwje30oKR3NlBuuKT/lPSbyP5zlPxxsXrn6SsjUUmSmQ1V8sL9Od20QUlH2aakQ/2omZ2elp0l6VuS3qtkBDtKyQjJ6X6ekLQlVY1ONLPRpf2zJT0uaaykyyV932LrciRln5Y0QdL7JJ0v6U8hGR20NaX2DWBmA5SMthdJmqHkXbo23XeapM9JOkPJept36LWjt9OV3NusEMKR6bY3pvf13ywYQjgmPccF6f4nzOwmM/tMpHp7SXowpF9+yoPp9lr3cZCkcanKvtTMrjIzLrBhNeS9I9fmucdIulnSlZJ2lPRvkm42sx1R7ANK/uDspCTlSKep4hwl3+jU9NjzlaYYMbPPmNlNXV0/LTtB0u6qM4pPTU9rlKReeaekr0eKniPpP0vP9bX05F/2Bv+qtCsdhSjJJbNc0j6Rsl+XdEUqf0HST7FvqJJ8MD4SbU47zZT0IyXpdF+RdIOSjnCOpCdL7RAkTUx/z1VxJLq4dN45ku7sBfd3iJIR6MAa+24RRnZKzGQblY5G0/s9pnRMkLQrfh+ldCRafi4N1O1iSdeWtl2jkmaWbu8cWf5VSUc2Vsno/yvp/uMkPS9pXyUrF31HSW6nsxuox/slzStt+5OkObinr2HfrPSbHKCkY71b0r4V2miQpD9I+k6D5SdLukQ1RvpKzClbJO3c1Xn6ykj09JCMQoZIukDS/5rZRDObbWa3mdlz6V+W85W8FFLysizpPEEIYaMSVcFpAiGER0MIc0IIU5SMWiYp/wv/DMp15iMfrtosiWzvaaZKWhRCqJWGf7qkb5hZh5l1SFqtZARHzaeZ97Ve0sjStpGqvVp8ZwK5b4YQVoQQnlcyYjxJkkIIf5D0T0pMKe3pv3Uq5pqPMUnJSJ0sUvw5LFLS8Y2V9GMlZpBrzWy5mV1uZoMauKYkycy2S8+xWUkf0SUhhGWSfqtUoyjxfiV/vBd2dZ6+0olKkkIIW0IIv1TyF+JwSf+lZMQzNSSG4m8rVz9WSJrSeWyqruwop+mEEB5TMirtUgWsdXgXv3uKJZKmRRxDSyR9JITQhn87hBDuRplm3sfDkvYtmUj2VQ2VNoTwgpIOkfUJpTL/HkLYLYQwQUlnOlDSQw3UY7mSPyhkmopZTqeW9r0s6fkQwsshhC+GEGYpsaueokT175L0vr+vRPN5Zwih9lowtRmo4tqnnXxAiYOuS/pUJ2oJpynxQD6qxLO4OoSwycwOlvQeFP+5pFPN7NDUS3mJirYep5swsz3N7CIzm5L+nirpbOW26yqslDQl5mluIfOU/GH+mpkNM7MhZnZYuu/bkj5rZntJkpmNMrMzuzjfSiXe4e5grpKBxYVpyE/nSOzWSPkfSvo/ZjY+tV9/Qom9V+l97Z1+a9MkfVfSN9LOtzPkrD1y3t9I2t3M3mNmA83sLCUqO+2Z7zOzWal/40uSfh5C2GJmR5vZPqnNdq2SzvXV11yhNv+hxJx0agjhxXoFzey96X3JzKZL+oqkP5bKHKpk9FzfK5/SVzrRG81svZKH+xVJ54QQHpb0MUlfMrN1Smyg13UekO7/P0qG6iuUqDzPqnmrZr+eWafEafIXM9ugpPN8SNJF3XDuW5WMqJ4xs+e74XzbRAhhi6RTJe2qxPO9VImTUyGEXykJGbrWzNYqufdorGLKJZKuTk0A7+rq+pZMSvhcpG6blTiuPqDEd3CuEhPY5vTYz5nZLTjky0q8308oGYzcr+S7khKT2X8p+V7mKbFpXoxjpyqxodaqxyolI8iLlJjOPi3plNRk0MmPlWgpz6TX6pxIMFHJwGdtWqf/TcvWqj+fy3RJH5G0n5J3pDO+873p/mnp72npIbMk3Z2+p3cpcXh+uHTacyT9MoRQyxzy2jqkRtR+j5kNV/KC7daIncNxnNdiZr+X9PEQwqM9XZfeQr/uRM3sVCVDdZP0r0pGSweE/nzTjuO0lL6izm8rpykxdi+XtJukd3sH6jhOd9KvR6KO4zjNpr+PRB3HcZqKd6KO4zgVqJtRxsxc128CIYSmxKs20l6DBw/O5JdeyqO9RowYUbP8gAEDCr9ffvnlmvLmzZsbr6gkxoV3l0lpyJAhhd+8vyrXaFp7bYf2ilWP00M4365WeLgkDS79Xgt5A+QXuqpdCb4GW7by2BgTSr8ZCFXhGs1qrxg+EnUcx6mAd6KO4zgV6HdJb52EgQPzpn3llTxnBlVequNTpmRpBgoq/6BBxRwQL76Yz6prb2/PZKrnVKPJ8OF5zpGddtopkxcsWJDJ22+fz+6MmQhoeli3Lp9UMnJkMQfHxo0bM3n9+vU1z9WjUIVnOhZWdTxkzp85AfIYyGWrzLOQfw6ZCi9Ve9ZpZ8hHQ/4B5DbIHaoNTQ9PR7ZLSc6oTtoj5+qF+EjUcRynAt6JOo7jVMDV+X7Kq6/WToDD7VSdqcJTXd5tt90Kxy9dmqeVXLs2d/1u2rQpk6nOb9mSu1mpwk+cODGTn3461/F23jnXIanm07s+bdq0mmX22IPrvEkPPvig+gxM3kZVmxaNNsj02s+A/MHSeZm2YwFkesLp9d8EmSr8EZCvgcxcVf8JmVlXT4P8fcjltB+Xq0/iI1HHcZwKeCfqOI5TAVfn+ykxdT4WdE7P+YwZM6Ll6a0fNWpUJm+33XY1j6E6z4gBevmHDRuWyYwkYJ1oeth77zxh/jPPZCuPaIcd6N4t/l6zZo16NbEst1SLqeZPg0yVuhykzoCF3SEz6IKmBAbrD4X8DGTmrmcKZOasb4P8CchzIZeD7cdB7kOJ9nwk6jiOUwHvRB3HcSrg6vzrDAbYU+WnukuPdzmAnWo7VXKel+o8g/BXrcrdwFTbGRnw/PO525jmgg0b8onfDMIfO3ZsJlO1l6ShQ4eqz8P57lS7H4PM4Heq7FLxC2fgPefU0/LDOfL3Qd4ImcH9f4W8J2Su6UlLykGQb1eRKeqT+EjUcRynAt6JOo7jVKDl6vzHPvaxwu9vfetbra5Ct9OMtG7NIjYfnarwpEmTMvmyyy4rlLvgggsymSo5vfAxmeYDBurH1H8G8DMqYPHixTXLl9V3zp3vs6yGzCHPnZCPhXx66Xh+XjQNMBpgU0RmZMCCyHaq/wzg5xz+6yPlJ6vICtWEt93oGsqtxEeijuM4FfBO1HEcpwLdqs7H0q8dfXQ+CXf06NGFY7iPqh89xKtX5zpNLM1aT9LbVXjCutLTTu/6Mccck8lUnSXpyCOPzGR60ufPn5/JL7yQ51Zjm/IazJhPme8QVXi+T88991zNYxcuXFioK6/dZ4H+Ogjyy0yLx6/4a6Xjt4fMOfJUnS0i8xo8DxcQGAaZgRw0HdwTOc9/q0jk0+6NKjzxkajjOE4FvBN1HMepQN115xtZ+IwqIb2v3P797+f5r8rXo0eV2ceZKi1WplTXmnLs/ridqiLlcqA5z8uUcAwEp3p53315tHLpGfTYQnUxODf9P/8zz2lW9nhTJadHP5ZWjzLnwvO8nOPO94aqPWEbsU2Yaq98PO9pyZI8EpwmiUceeSSTH3jggUzuyfbiE6BTvJAJnyo159RLhaD8Nqjnb0QRTpe/H/JzVNv5aMdCZhm+KvTC8y7ptedc+9K59v9KLu+NIkdCfg7y53g5X6jOcRyn7+CdqOM4TgW8E3Ucx6lA5RCnWN7Kq6++OpN33DFfy6Cjo6NQjrZJ2iA5s4ZlaGOjPYzQrhYrE6s3bXs8j1S0n3F1TNreGII1eXI+JYM20d7Il7/85Uzm8iD1bOa0ZdJOSbspnyfbgs821l48T6wdWQeuZCpJTz75ZCaPH58vm8kwu7/97W+ZPHv27EymTbQneSWy/Wi4Bm6jm2BUqSC+8NiCoowsKiwuitlLm5iwhPZONkssLymh3XR8aR8MsrwNzrFjKtNdI5doNT4SdRzHqYB3oo7jOBVoWJ2PqVNU97isBGcctbW1ZTLVPqmojlGOJbFgDkvWibNbYrB8TJ2vZwqIhVoxdIdJM3iuI47gcom9A5pG2tvbM3nmzJmZXE5YQvWczzym9vN4queUYzOL2EY8P80nsVlXkjRmTJ74kmaWWBIWmgO4omgriI1m+JYeBZkTgviWhnLOFZx4pGpDdZ6Hb4pl/qBqT7hUCI+lHaFQ2dLxCJ3iZKkZkBnWxM6LC4q2Gh+JOo7jVMA7UcdxnApskzpPNYueXKrzK1euzGSq8+UEIlQpeV6qbDHVm2U4UyiWw5JQPWQZqnrlY6nKxmbTxMrwOfUWWKdnn83XjmCUBGdjSUUVnkuKNOJ5j5loYnlJY23K58rrMkepVGwLnotmGb6bbO/ybLVmQ4c3jRIzIO8P+X8h05C1uWwZgcpMQxrjGOip57nG4vVfleeUUYhNo+LBVNU5w4lLi5TNAlislVo/c6UshcxURj2ZasZHoo7jOBXwTtRxHKcCDavzsUQjBx98cCYzuPktb3lLJlPlKqvBVOdjiUBiwfYxtT0mx9T/GGWPMyMDuI8mAE4m2HfffWteuyehCk91nJ5s1rVcb5ZjXs9Y3lC2fez5xXKcxmSahNaty/245WQpvD++NzyeS4jst99+mTxsGLN6NB9qwlTnuZjOLZALwej1PN5I8jFwde1iNFzwrmM5RF6FCk9v/sBicETGBurjtA7tXCoI9Z6pT/lsuFrKSsgs32p8JOo4jlMB70Qdx3EqUDnYnjkc//jHP2ZybGmH8nx0BqfHvLGx3J9U1WM5RCnHvMMsw3qX6xq7j1hQeL15+D0Fvc5UhWNREvVMGnzmfDacNBEzoVDmsdwea1PWj8dy0oNUfLcYSM97YHvTHNBq80vs7ZgC+TbIh7MQq8qAd6kQJB9bpHNZZDud5wx+p2f/JVz7JbrI+drwpB2Qd1SRPECkcD0+gzWqjXvnHcdx+ijeiTqO41SgYZ1la1e0jKlD5QD2WOB0I8H2sXnusbnYjcydr6fK8nqxJSoayQXQk5Q92J1QFY6pvmV4T3w2NBnQ+03Vmc+Gq7myflTHY+YX5jBgtID02rn0ndDMMnZsHgnOFHkx81WziK1ouTyyveCNHge5/JrhEbDl+XVSnZ8BmRkGNuPgsXDJr8UckuEIyKcGD6tRIZXdwnK2wQ7VhGaFJZBjEwZajY9EHcdxKuCdqOM4TgUquyBfeCEfw1Nd41xsqk9lFSumOm7t6p1Uw+nh5bW31iRRJuaNjqn5DPYu5wzobTBrP+eTL19eVChHjcrDvKlKxyZHsL1jqxJQZpA73wc+P66U8MQTT9QsX64H98UmacTK9CSPQGbsQSGZ3yTIC1QEVgkev0PtIoUyBeMI1PbBjLCHTs1jJ0B+AF74fWCHWAhvvKRC5D7PxU6KvQefQdzo1Hx8JOo4jlMB70Qdx3EqUFedb8Sbffvtt2fymWeemckM5KZaVfZ6UvVuNOC7VplY4H0sFVvMu16vrrwG1VR6mmMqfzmjf0/x1FNPZfKpp56ayVSXOb++Xq4DqvZMQ0dPP58ZVfXYM4uZRnh+lqFnf9Wq4gxqvoOxAHuakxoxG3UnHMFEpp3rd5AZm14IOueKbYtLJ8Bk+OexmZ76TW253N6Ry6uZvRGJ/jdx0joWpOObwox3k9EshfUCSqaHnfCJcA4/v8KOyHasqddyfCTqOI5TAe9EHcdxKlBXnY/NQacKTpXpsccey+RrrrkmkxcuXJhfsKQe0oNNqC43kp2eUF2Leedj52wUBoJTFY55lHuLt5f3zXa55ZY80RojK8rPePHiXF9k2j+q1Xw/qHpTJWf70svP4Hy+G1T/ly3Lw8NpemB9yvXgtbmdbcQ6tUKdfzUic8l2BsJTu17HNHLMD1eOOn88F5nyjsnmJ3TkMt/SNgTJd+AahSUhoYIz5n8h5EMhPwR5YsnCRZWcdWWdGOMyMLK91fhI1HEcpwLeiTqO41SgYe98LKUcue+++zL5pptuymRmvy+r85wrTdMAialWMfU8pk6yzLakpqOZgJ5mbqdKyDSBvUWd530vWJC7R6+77rpMPu20fBXvcnsx0J2qML32U6bkycti89w5Z53tQm85r81IgBUr8lTps2bNyuTy3Plddtklk+np5zvHdpk+PZ/Z3WrvPNX5gmqaW6O0jjou9fzdc3Fwad35l9pymU51er9XchI6bns8K4IDCuvL4bVmgPwzkGdB/mfIby5WVXeMx2kjafEYxcAW8lR4juM4fRTvRB3HcSrQsHd+a+G68/Sg3n///YVyO++cuxknT56cyZzLTZWL6h4XiIup8LF0eTFiEQlSPLUa1dFYQH8563pPEZswQI83U9k98EAxXxlVZKrt9957byYznwJV5Pb29kzm/HyaBdimVOcZDUFTSr0oDkZKxILqY5M6WrHufEPxIZwgDj16ALZvicyPl6QhHblMJ/5RkKfBLb4YC9vNRt65GyHnRiqpAzYC3g8088K68YwweM1SkVjEjhMDONLjF/lSRG41PhJ1HMepgHeijuM4FWg4FV5sETlCz21s3viBBx5YOGbevHmZvGRJrjNwzXaqXxs25GP+2KJmsYXMGplT32hAfmyON6H6umjRoui5WgknH4wfnytdfJZUqQ89lKHSxaB8tt1BBx2UyTRdMDifHnxeg8+fpoCYaYTwfSjDY2JmIHrqWVe+i62AAfYF1XQ0ZHjqtzAyHY+GKrskHQB5MmS+jQye3xW3Xch4h6z1rOtUfCIckVGd3xTZXgokKJyAwQc0UXAuwSjIPZmZwkeijuM4FfBO1HEcpwINq/MxFX7ixImZzCBozp2np54qvySdccYZmUxP8JNPPpnJM2bMqHk850NTdYutL7+169SX2dpUabweVchmQRNDLKUfJwBw7vyNN96YyVRlyyaNOXPmZPINN9yQyWy7ffbZJ5Nji7/FTCicO0/PO9ua5+Sc/TFjmIAtnj6PJg3WIzanvmlAj36Jj3lARGa0/C6QO3Kx7J1/EjKD3qkK806ZIZ4ecqrwfJPbIDN2ZQZkxndwoboHVWRE7bk2giWBFo1CXV/j6W8hPhJ1HMepgHeijuM4FWhYnacaeMIJJ2QyVSMGYl922WWZPGFCvmxV2Zu6dOnSmteg2k6VjQHYNCXE5sjH1PltSYUXM2lwO4PW999//0yOrffenfAZULU98sgja5bh82Z7TZ2aR1zTRCMVs8fzGmwLtinfj2nT8rzmDLaPmV94Lb43jCqIzaOXitERNAHQTMBM/0cffXQmt2RyBHTTwfgsJuI1GwadmnPWQ15tLUNVqS5LxTnyTFX3NOQ9IHNhPGYiWAN9eU1kovpekLm8IbLxFdbUW8GM/JL2hO3hMfRMBtc7g/Wfo27ffGtZFB+JOo7jVMA7UcdxnAp4J+o4jlMBqxeqc8ABB2Q7Z8+enW3/7W9/m8m0O5GTTz45k2ljKyd24AwVJiPZc889M5l5ImlzvOqqqzKZySa4lEQs1KeRZCRlYsfTjsfcorSDMpwohLD1F2+A/fbbL7tZhoXdc889mbx8+XLV4phjjsnkN7zhDZnMZ1k+njZO2iM5O4uhXZdffnnNa/NZMrkI7aC0rVJmjlKGKEn1V27thLZPvpucvdSs9hpollXwcGxnip5C7k5A+ya9DMNK5ZgshGlDaUKcCHkeZNovGV3FWUftkGdAZrRSR6RMeYVOOmj4wBnKxHNF84w2qb1i+EjUcRynAt6JOo7jVKCuOm9QN5zuo1nqRl9qL4a9cUYbk5TEZg2NG5crszT1lJcy4Sw25rSNLUMTS7Lj7aWiveFOyFw2lFOcCNcB+TPkctQfM5K8AfLTqk0ka4ur847jOH0I70Qdx3Eq0PCMJcfZFhitQHWZS8FQnedspFhOz/Kqnp3Eco5KcRWeM7hY19ctDJ6hunw85LsgHwL5RtXmz5Htr0koCmIqPGcpMYtKLIyhBfhI1HEcpwLeiTqO41TA1Xmn2+GkCSYjoUeeq3fSqx5btXVbEsaQ3XbbLZMXLFiQyTQrrFmzJpNbkf+113Am5N9BpkeeFhRG9DOCP7rGyTbwQcg/hEyzAjObMOloi/GRqOM4TgW8E3Ucx6mAB9v3AP09eJvz7am2x9T52LIm9LbHvOuNwvylHR0dmcy5+gywL61G2q/bqzDBnpPkj4RMdZ5GQOYWpbc95l1vFKaGZZLTKZBpcYE6HzZ7sL3jOE6fwTtRx3GcCrh33ul2qKrT2x7zyDONIeEyHt1ZJ5oPeA2my6saDdCnoKpOb/uzkJkRkeVpkFiv7iO21Cjz/jHzYfe9KluNj0Qdx3Eq4J2o4zhOBep65x3HcZz6+EjUcRynAt6JOo7jVMA7UcdxnAp4J+o4jlMB70Qdx3Eq0Ks6UTMLZrbr1u7r4pxzzOzOrks6vQEzazez43q6Hq3GzI4ws8fxew8zm29m68zswp6sW3dhZnPN7Lyerkd305RONH1YL5jZ4K5L903M7CgzW9p1yb6LmR1uZneb2RozW21md5nZm3q6Xv2B8qAghHBHCGEPFPm0pNtCCCNCCFc2cL79zOxeM9uY/r9fnbIXmNlfzewlM/tRad+bzex/0vZ+zsx+ZmY7RU7VKzCzMWb2KzPbYGaLzOw9DRyzvZk9Wv6GzexUM3vIzNan7/6s2Dk66fZO1MxmSDpCyYSwt3f3+Z3WYGYjJd0k6ZuSxkiaLOmLqp5ut+mYWa+dzrwVdZsu6eEGz7m9pOsl/UTSaElXS7o+3V6L5ZIulfSDGvtGS/qupBlpHdapmBa5N/LvSnI6TZD0Xkn/YWZ7dXHMp1ScwCoz203SNZLOl9SmZNWoG7pssxBCt/6T9AUlS1n9m6SbSvt+lN7wzUoa5y+SdsH+IGnXVD5c0hJJR9XYN1jSv0harCR517cl7RCpz5y0PldJWiPpMUnHYv8kSTdIWi3pSUkfxr7Bkr6u5KVbnsqDleT2flHSq0pmDK+XNKm7n2VP/pN0kKSOOs/0zrQNXpC0UNKJ2D9K0vclrZC0TMkHOyDdt4ukWyWtUjJD+hpJbTi2XdJxqTwzPffZ6e9TJM2X1CHpbkn7lo77R0kPKunoBzbhmUyV9EslH98qSVdh37mSHk2fx+8kTS+9138vaUF6P7en2zak785Zko6StDQtf6uSJHOb0v27d1Gv49PnbNi2WNIJXRx3qaQfdVHmAEnrtuIZHSrpnvRbu0fSodg3V9JXJc1TsrTc9ZLGpPuGKPkjsCpt33skTWjgesOUdKC7Y9uPJX2tzjE7p211YuczT7dfIOlm/N5OyXd+bN06NOFFe1LSxyQdqCQtwATs+1H6kA5WkvzkGknXll62XSWdoKQDPbi8L5WvUNLxjZE0QslfjK9G6jNH0iuSPiFpUPrCrkHj3S7pW2kj7pd+IMek+76kZK3C8ZLGKflwv5zuy176/vhPybqPq5SMak6UNLr0TF+W9GElaSA+quSPTOcMuF9J+k76go9PP5qPpPt2lfRWJX+MxqXP/+s4d7uk45R8vIslnZJu319JSozZ6TXPScsOxnHzlXR0Nf+gVnweAyQ9kL57w9L35fB032npez8zfa8/L+nu0rv7P+n7ukP5fa71PinpcM7D75skfSZSt09IuqW07SZJF3VxT410ov8g6c8NPqMxSv6IvD99Dmenv3fEPS2TtHf6DH8h6Sfpvo8o+Y6Hps/6QEkj032fUWlAhmvuL2ljadsnJd1Yp543SXpHjWd+gaTflNp8k6SP173vbn7RDlfycY1Nfz8m6RPY/yNJ/x9+nyTpsdLL9llJiyTtXTp3ZwdrSv6CcwR7iKSFkTrNET7wdNu8tKGnKvmLPwL7vtr5Ykl6StJJ2Pc2Se21Xvr++E9Jp/AjSUuV/CG6QYnKNEfSkyg3NG2fien+l4SOLP2Ybotc43RJ9+N3uxKzwVKlWki6/T+U/gHDtsclvQXHndvEZ3GIkj+wrxnhSrpF0ofwezslKYqn4909ptb7jN/lD3qu0Il2UbeLhcFIuu0aSZd0cVzdTlTSvko0tCMarMf7Jc0rbfuTpDm4p69h3ywlo8gBSkbyBe2iwWseIemZ0rYPS5obKf8OpX9wajzzPZX0LUcpWZz5YiXa5mfr1aG7baLnSPp9CKEzkdV/pdvIM5A3Shpe2v8Pkq4LITwUucY4JR/tvWbWYWYdkn6bbo+xLKRPKWWREjV+kqTVIYR1pX2dq5dNSn+Xj3tdEEJ4NIQwJ4QwRcnoYZISk4aEdgwhdOY0H67EjjZI0gq0z3eUjEhlZhPM7FozW2Zma5WocGNLlz5fyUhuLrZNl3RR5znT805VsT1qL1TfPUyVtCiEUGtx++mSvoF6rVbyx34yyjSzbutVXDFe6e9tXg4gdXrdomQUdkeDh5W/F6n4PUnF57BIybsyVokK/jtJ15rZcjO73MwGNXDNhu/dzIZJulxSzWiHEMJjSvqrq5SYosYqyatf14HcbZ2ome0g6V2S3mJmz5jZM0rUjDea2Ru34lRnSjrdzD4e2f+8EjvFXiGEtvTfqBBCuTMmk43JIqVpyu2cY8xsRGnfslReruQDKR8nFTMp9nvSF+xHSjrTeixRMhIdi/YZGULoNPT/s5Jnt08IYaSk9ynpcMj5kqaZ2RWl834F52wLIQwNIfyU1dy2u2uIJWmdajkZligxV7BuO4QQ7m5R3R6WtG/pHd9XDTqmypjZdEl/UDLy//FWHFr+XqTi9yQlf4y472VJz4cQXg4hfDGEMEuJXfUUSR9o4JpPSBqYOoU6eaNq3/tuShxmd6T90y8l7ZT2VzMkKYTw8xDC3iGEHSX9U1r+nnoV6M6R6OlKVONZSmyL+ylRB+9QYw+jk+WSjpX0cTP7aHlnCOFVSd+TdIWZdY5uJpvZ2+qcc7ykC81skJmdmdbrNyGEJUpUiK+a2RAz21fSh5SMjiTpp5I+b2bjzGysEqdZ576VknY0s1FbcW99BjPb08wuMrMp6e+pStTyP9c7LoSwQtLvJf2rmY00s+3MbBcze0taZISS0cMaM5usxEtaZp0Su/iRZva1dNv3JJ1vZrMtYZiZnVz6A9hM5ikZnXwtvfYQMzss3fdtSZ/t9Aib2aj0PavHSklv6Ka6zVXy7V1oZoPN7IJ0+621CpvZQDMbokSNHpDey8B03+T0uKtCCN+ucewcM2uP1OM3knY3s/ek1zhLSX9wE8q8z8xmmdlQJT6Hn4cQtpjZ0Wa2j5kNUOJ0elmJKl2XEMIGJZ3hl9J2OUyJjbpW5/+Qkk58v/TfeUraYT+lI2QzO9DMBpjZOCVRCjekA4i6legum9FvJf1rje3vUqL6DVQykrkU+45S0SZB59HOSob759XYN0TJiObp9IE/KunCSL3mqOidf0LS8dg/RUkjr1ZiAz0f+4ZIulLJx7MilYdg/w+UexP7m3d+sqTrlIwiNqT/f0eJqjRH0p2l8myfUUpsmEvTZ36/pHen+/aSdK+SjnS+pItK70C7cu/8GCXOnE5n3glKRgUdaXv8TKk9m8c18ZlMk/Rr5ZEFV2Lf+yX9LX0fl0j6Qa1ng23np/fQkX4j5W9hroqOpVskfa5O3fZPn+uLku6TtD/2fU5wPEm6JK0T/12S7vun9Pd6/sOxF0u6pk49Dk/rsSb9//DSPdE7f6Ny/8nZSmzcG5R0bFcqtT+X61/jmmPSdtmgxBn5Huw7gvUvHVd45um2O5X8EV+t1Dna1Xvh+UQdx2kYM/u9Ejvpoz1dl96Cd6KO4zgV6FVz5x3Hcfoa3ok6juNUwDtRx3GcCngn6jiOU4G62UnMzL1OTSCEUA4u7xYaaa9iPHbX2+s5Hl8vTsmWtNcO2PEy5B0hb4HM6GR+xetLF3kR8uqtrGAfpVntFcNHoo7jOBXwTtRxHKcCvTZ5rVON7bar/fdxwIABmUx1PFa+rLK/+uqrNeXXi2rfrfCRx3LHc0GczZB3hsyUKIU0w0oS0XXCNBqrIG+KVdBpBB+JOo7jVMA7UcdxnAq4Ot9PacQLTxU8Vr7e8dvi0XcAs2UyGy5XsWqDzEy8QyLn3Fz6TVWfySLXR8rUypbq1MVHoo7jOBXwTtRxHKcCrs73U2Jqe6zMtpy3kWs4deCCxoMhMxUx1fZhkDn8YRB+eUENBvEPjVx7TZ06Ol3iI1HHcZwKeCfqOI5TAVfn+xGNeN65PSb3drbfPtdFN28uu6P7EFThN0CmF70DMufBr4U8ADLn3UvF5fFYrsvVi7qRd0O+toXXbRE+EnUcx6mAd6KO4zgVcHW+n9JIIDxlzoPfFq99s2GdOP+/T8MhzPaRMvScM0B+BWSaBcrDoi2qTdmL391w8sDeTb5WD+MjUcdxnAp4J+o4jlMBV+f7KTH1fODAvMlfeSWfKF01IL/Zgfc8P++tT8PHxBR2YyAfAPleyPTOM4ieqr1UHCZtV6dcd8M6PRMt1S/wkajjOE4FvBN1HMepgKvzKnp7G83WPnhwrg+99FKeu2y33XbL5AULFnRXFbca1p0q/JYtW2rK2+LxjqnwzJLf21XvSZMmZfLy5ctbe3F6zhlsfxDkxyE/AJkZ76k6l5uRc+8ZxL8S8hTIzH6/tbAevLdHc3EENq+rc6r3Q/4x5G9B/thWVK2Z+EjUcRynAt6JOo7jVMA7UcdxnAr0aZtoLLcl7XCTJ0/O5EMOOSSTb7nllkzesIEGqcagHZScccYZmXzZZZdt9Xm7i0aSjtAOGnuWVUOctjb0aezYsZl80kknZfIvfvGLTN6W9opxyimnZPJ3v/vdbjtvQ/BxcAYRXy2uyrkH5BENyFJxJtTLkXI0To5GEawUOhJFlkH+O8g/vxw/PgEZdtZ6dlDy48j2d0J2m6jjOE4/wDtRx3GcCvRpdZ7EQmmOOOKITJ49e3YmM7Tlyiuv3OrrjR8/PpPf9ra3ZfK6dY0qLM2lkfAjzliKhTixfJmYes7zbi1srwMPPDCTd9xxx0y+4oortvq8DEk78cQTM7lKXSvDR071Gmq0doY8DzLU7sJXPKHONWJNyfNGEpMsq725EDWlqyC/EfJfIwfX4U7InMx16dafqun4SNRxHKcC3ok6juNUoE+r81RBqZa96U1vyuSZM2dm8sqV+TQNziz61a9+lcmrV6/O5B124FKJ0qJFizKZ6uXIkbnvcunSKlM+mkPMwx7zzlOFLx8bi4JoZBXQ2Pa9984TTu65556ZvGTJkkzeZZddMvnXv/51Jq9YkSfW5LIhkvTEE09k8sSJEzOZEQA8vuUwCQj1YqrqtDbMhEx3+VTIk1QkFlzBVVXaIONx7ITNNFJ9CjItD/s/lsv3s36o0xmYFDa9VKWPQJ4L+WrICxVhaGxH8/GRqOM4TgW8E3Ucx6lAn1PnY97lYcOGZfLf/V0eAsyg+CFD8mwMI0bk7tBGVdm99tork6lqvvBCrtQw2Uer2dog+dh9Uy577bc272hM/ec13vnOPISabcpnOXx4ru/GzAJldf7Nb35zJrO9+E6MGjWqZr3rRSV0G1TnWfWXItv5ak2NyPTmS9JGyHRzMzEJg/CxougT2MzY+R0hPwuZeVPu34Qf8PhzvsBvSlW9CTJjbZ56B34cCvnTkMerx/CRqOM4TgW8E3Ucx6lAS3TPevOnqTY1MsebOTDJ+eefn8n0wm/alOsV06fn/kCq9iwfyy0qFedsb96cuzfpnWdQN00M3Tnfu7uIPe/YKqCSNGjQoJrl2C5Uw/mcCNvr2WdzpZDtRY88n+XixYszud67tXFjrstShWdkBe+HJp6WtBe/PqrXVPOpalPNfx4ym6i87AfzjvIaQyPbeb1IEaYinQj5Lzxg/1w8Hju4eCnTAkjFVAJt3EETxazI9tiqpi3AR6KO4zgV8E7UcRynAt2qzjeSfq1MbM57Iyr82WefnckMpr7//vszmaplW1tbJq9alSsTDLBnIDbVu3KdCE0SQ4fmehID+ufPn1/z2O6kkXR2jSzjEQuQl+Jtwef84osv1ixz1llnZfK0adMy+Z577slkPmO26XPP5a5lqv/MYUBTilT01rN+vAbbmIH+997LpTWbBOdyUL1m4P16yNSpF0Ommk9PvVSMkue8ejZRJH3AZMi/gMxp8eMgz90HPyJLgtwFeWk5bV/++LUMgfuFevOCKC+WbzE+EnUcx6mAd6KO4zgV6FZ1Pqa2xwK5paJ6GPP2knPPPTeTd99990xmMDW9r1RHORd+2bI8uRdVOqq19O5KRY9+IxnbmSKvFep8jEY877wfqrv0Xtc7F4Pked6PfCSfEU1ve3t7eyZTJec5aRphBAXbl5TNCLyPelEXnTDLfUvUeX59rDoD1RncwNeRQfhUi8tzyPlqcqI7zQFMH3ByLi57JJf3x6R1BuEXYi/QLKP+lsu/gJVlR5oeaJ6Qimo7zRjPqDbHQH4iUqYF+EjUcRynAt6JOo7jVGCb1PnYvOKYV5fqU0yVKsPM81z8jSr5ggULMplzq+mlperHwO+Y2kjKJgUGbHMfA7N5f4cddljN8zaLRlT1Rua+x1RzKe7R32mnPHEa58KzvR57LHehsr1oMmB0RKy9GHhf792ies/2Wrt2bc3zsr0aWVSvMoznZ5A7VVl61+m1p0WDqmz586I3myo8r3c6ZPQIw2/O5QdRhNYDaO2FaxeeHur9AtX5snee9aNJg/nvfguZz6AHF5TwkajjOE4FvBN1HMepQF11Phbw3ohKHlOHxo0bV/g9Y8aMTN5jjzxRFtVDqnVUxRg8z/nrVA+p2rPenEfP8h0dHZn88svFicSxVG5UG/nMuGgd0+g1i+5qL6r2EyYUVz6jh53B6fSwM6qBExmYdo4yg+Kp/vP577prPgmc98nz09wiFZ8B74nml1jbM9t+0+DrxYB3qqZ0f6+FzOEP1Vqmo5eKAelvhkwVmavC5Raywpp1rGoHrV+c3/Akqnpw7XPy0PXlRQW4kz3TU5B5r4sgF1bMay0+EnUcx6mAd6KO4zgVqKvOxwLeqeJRLabXlDJVtJ13Lqbepmec6tv69bmLkqoz1UCelx5lnjOWDo0qJBcr4/nLXntmsKd3efTofGUxqoqc+x0LEO9OYmuoU9XmnHW2Ec0hvG+aWKTiM+fzXLNmjWrBiQycrMBj+SxpAqGZhGYZthdNOuW581T1eQ1GALC92EZjxoypdTvdy2rItH7hUQ4LtYts5EJwbPZyN7ANOgAABeZJREFUAPvTkJ+KyJx3vqmmqN0h/w16/gQE8G+AvB5NsSe201IxvpRiYSx+M93eIkYxYE5+IRVe7devJfhI1HEcpwLeiTqO41Sg4WD74447LpMZCE8Vkp73mKe4rHJSfaPKRVWYnlWqbFSvqfLzPKwHVTeaC6iKUvWtB69N7zfVXdY1pmp3J/SwH3NMPrGY5hfWI5ZGjvdT9ngzUoLmAEZTsL2pwjOdHduUKj/NKWwjvif0osfurXwfTH3IcmwvvivlyIymADWXy+UhKbyYfJGZ4OcvwQ/qyOU55LTI0dPPNHxUq2F1Goc568NQhGver6RXnN72jlzkPbCFyvEq7Iz4PKZh8gFTBjwCr/+K2lkqW4KPRB3HcSrgnajjOE4F6qrzxx9/fCZ/6EMfymTOgaanlCoX1WuqgOXs8FTreDy951TLYuvFUy1jeQZT00RANXDWrHz1K1633trjNA3Qm82F1qiOMht7s6DJ5ZxzzsnkRx7Jc5qxvagW8zlRlS2v5U74fHg81eVYe9HkwvZiBnqajdh2DPKnGaIcTcLzcpJGrL3ozWfqvWYxCfLsyHbCtekGQC9eiR1Lf148huXoYWfcyXTIWyJp5wqJ4xmFT2vPGyBDzX8MZost+PxfLgX/UIWnqs+AA5oD6Jy/1heqcxzH6Zt4J+o4jlOBuur8vHnzMvnNb84n3u6zT74iVSzdG1U6qulUmcq/6SWnGkk1kAHRDASnisbAcXqs3/jGfImtBx/Mk3sxyzpV4nLwdiwfAO+VGfOpQpYXvWsGbK+DD84nL3Pe/iGHHJLJsRR5NFVQ5ZeK7cUIBbYXz8X2mjlzZibzeTD4nceyPE1ITz6ZT9Lme1leVI/tQlWf5iWaNzgxg+aGZsFg9mWQqdZy2Xh6yDmNnprshlIQCPfx6WwX2U55KWQGA4hpBWid+xXkU1GH9toVGlxKX0f1fBfIXNv+mYjMZ9ZqfCTqOI5TAe9EHcdxKmD1MnibWZfpvan2zJ6d+xipah966KGZXE6FR9WbwdsxVZMeV6qWVPf+8Ic/ZPJvfvObTKYnNsYNN9yQyZxnLknPP5+7QWmioEwVkoHqn/zkJzN5/fr1Rb2zm2ikvWj2YHvR402Vn6q2VFTDGRFBYmvY8zlxVYLbbrstk2+66aZMZpQA3weq4yxfnu/+zDO5wkfTQyyzPev9+c9/PpNffPHF5rTXdmgverwRFM9EhC/VLlIIQC9PFeFp6TwfDTlmJpgLeRkrMhMy5+DTpU79+nrI+Py/VLARFCMUjobMe0C2Pf0O8tchLwihKe0Vw0eijuM4FfBO1HEcpwLeiTqO41Sgsk3U2XpCk2w2bK9GVvjsLXAWG+WYbTWW57ZZtKK9RNMzDZMMQmQzlnJxtpSDINPQ+hxkTq9qh8zcoI0t/LvVNKu9YvhI1HEcpwLeiTqO41Sg4XyiTu+nPGOn1vZYGarOrTYFxMKMqNoz2QlD1VjXRlY17VVwiQ9OjuPktlh62/bIeZqVN4V1ormB04Y4k4lZVL4FmbFVi7uhXr0AH4k6juNUwDtRx3GcCrg6/zqAKi/VYqrRVJ1ZvjuXNYnVI3ZtwrrGyvQbOIWI6i+bgl5xTgLsTnV+cuQaVNs5XYpDso2QObGN04/6CT4SdRzHqYB3oo7jOBVwdb4fEVN5uT0mx87TnVCFj3nSYyaGWL37tGrPBUUZhE5PfSxxKFbAVCkvZ7dBD3s7ZD5yBv1znRGaHngPWE20v+AjUcdxnAp4J+o4jlMBV+f7KTGVvNXzzklMJY/NkW9EVe/teQEahuovVWR6uWkBYXLR7gugKML575wXz6FXB2R66tksLE/Vvp/gI1HHcZwKeCfqOI5TAVfnnZbRiOodmwvfb9R2QjWcK9eESBkOeag600JT9TExMD6Wko/XYyQB58Kz3q9G5O5kSJPO2wA+EnUcx6mAd6KO4zgVqJvZ3nEcx6mPj0Qdx3Eq4J2o4zhOBbwTdRzHqYB3oo7jOBXwTtRxHKcC3ok6juNU4P8H/SQc59/AFfgAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAXnCAYAAAD1hoh8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXhO1/r+7wSZZyIxJhHzUEoNVYRWaQ1FqQ6OWfmqsUfr0NMWHfQobelAtT0HTSelRWvWotrS0qI1z4mKREKFRBBk/f7wy9usZy9538SWqffnulyXZ79rrb323mvvlb3vZz2Pm1JKgRBCCCE3hXthd4AQQggpCXBCJYQQQmyAEyohhBBiA5xQCSGEEBvghEoIIYTYACdUQgghxAY4oRJCCCE2wAmVEEIIsQFOqIQQQogNlKgJNS4uDm5ubpgxY4bTspMnT4abm1sB9Ir8XXBzc8PIkSOdlps/fz7c3NwQFxd36ztFAAADBgxAZGSkti09PR1DhgxBeHg43NzcMHbs2ELpW1Fm48aNcHNzw+LFiwu7K8WCAp1Q3dzcXPq3cePGguyWUzIyMjB58uRc+3X27FmULl0an3/+OQBg6tSpWLp0acF0kNxydu3ahV69eiEiIgJeXl6oVKkS7r33Xrz11lu3fN8cS65x8uRJTJ48GTt37nSp/NSpUzF//nwMHz4csbGx6Nu3b573uW/fPtx3333w8/NDSEgI+vbti5SUFJfqLly4EP/4xz9Qo0YNuLm5oW3bti7Ve/nll+Hm5ob69evnub/FibVr12Lw4MGoX78+SpUqZfmDyBW++uorNG7cGF5eXqhatSomTZqEq1evGst+8803uPvuuxEYGAh/f380adIECxcuzNP+Sue5hzdBbGysZn/44YdYt26dZXudOnVueV+effZZTJgwwaWyGRkZmDJlCgDccNCvWbMGbm5u6NChA4DrN2uvXr3QvXt3O7pLCpHNmzejXbt2qFq1Kh5//HGEh4fjjz/+wE8//YRZs2Zh1KhReWqvb9++eOSRR+Dp6elSeY4l1zh58iSmTJmCyMhINGrUSPvt/fffR1ZWlrZt/fr1aNGiBSZNmpSv/Z04cQJt2rRBYGAgpk6divT0dMyYMQO7du3C1q1b4eHhkWv9OXPm4Ndff0XTpk1x5swZl/c5depU+Pr65qvPxYlPPvkECxcuROPGjVGxYsU811+1ahW6d++Otm3b4q233sKuXbvw0ksvITk5GXPmzNHKzps3D4MHD8a9996LqVOnolSpUjhw4AD++OOPPO2zQCfUf/zjH5r9008/Yd26dZbtBUHp0qVRunTuh5+VlYXMzEyX2lu5ciXuuusuBAUF2dA7UpR4+eWXERgYiG3btlmub3Jycp7bK1WqFEqVKpVrGaUULl26BG9v7zy3/3fj6tWrlslSUqZMGcu25ORk1K1bN9/7nTp1Ki5cuIBff/0VVatWBQA0a9YM9957L+bPn4+hQ4fmWj82NhaVKlWCu7u7y2+bTz31FFq0aIFr167h9OnT+e57cWDq1Kl4//33UaZMGXTp0gW7d+/OU/2nnnoKt912G9auXet41gcEBGDq1KkYM2YMateuDeC6VDhixAiMGjUKs2bNuqk+FysN9ZdffkHHjh1Rrlw5eHt7IyoqCoMGDTKWfe+99xAdHQ1PT080bdoU27Zt0343aajZGtjHH3+MevXqwdPTE++++y5CQ0MBAFOmTHF8lp48ebKjXlZWFlavXo3OnTs72rlw4QIWLFjgKD9gwABH+R07duD+++9HQEAA/Pz8cM899+Cnn37S+pKts23atAnDhg1D2bJlERAQgH79+uHs2bP5PYUkHxw5cgT16tUz/rFUvnx5y7alS5eifv368PT0RL169bB69Wrtd5OGGhkZiS5dumDNmjW444474O3tjblz5zodS8WFhIQEDB48GBUrVoSnpyeioqIwfPhw7Q/W1NRUjB07FlWqVIGnpyeqV6+OadOmaZNlTj+JmTNnOu7x2bNno2nTpgCAgQMHOs7V/PnzAegaarYueOzYMaxYscJRNi4uDufOncP+/ftx7tw5p8f0xRdfoEuXLo7JFADat2+PmjVrOqSf3KhSpQrc3V1/BG/atAmLFy/GzJkzXa6TG0ePHsVDDz2EkJAQ+Pj4oEWLFlixYoWx7LVr1/DMM88gPDwcvr6+eOCBByxvb4cOHULPnj0RHh4OLy8vVK5cGY888oh2Lk+fPo39+/cjIyPDaf8qVqxo/EPIFfbu3Yu9e/di6NCh2ovTE088AaWUpgm/++67uHbtGl544QUA17X1/CZhK9A31JshOTkZHTp0QGhoKCZMmICgoCDExcXhyy+/tJT95JNPkJaWhmHDhsHNzQ2vvvoqHnzwQRw9etTpBVq/fj0+//xzjBw5EuXKlUPDhg0xZ84cDB8+HD169MCDDz4IALjtttscdbZt24aUlBR06tQJwPW/PIcMGYJmzZo5/kqNjo4GAOzZswetW7dGQEAAxo8fjzJlymDu3Llo27YtvvvuOzRv3lzrz8iRIxEUFITJkyfjwIEDmDNnDuLj4x0PBXLriYiIwJYtW7B7926nbxI//PADvvzySzzxxBPw9/fHm2++iZ49e+L48eMoW7ZsrnUPHDiARx99FMOGDcPjjz+OWrVq5TqWigsnT55Es2bNkJqaiqFDh6J27dpISEjA4sWLkZGRAQ8PD2RkZCAmJgYJCQkYNmwYqlatis2bN2PixIlITEy0TCLz5s3DpUuXMHToUHh6eqJHjx5IS0vD888/j6FDh6J169YAgJYtW1r6U6dOHcTGxuLJJ59E5cqVMW7cOABAaGgoFi1ahIEDB2LevHm5/uGSkJCA5ORk3HHHHZbfmjVrhpUrV+b/hBm4du0aRo0ahSFDhqBBgwY33d6pU6fQsmVLZGRkYPTo0ShbtiwWLFiABx54AIsXL0aPHj208tm67b/+9S8kJydj5syZaN++PXbu3Alvb29kZmaiY8eOuHz5MkaNGoXw8HAkJCRg+fLlSE1NRWBgIADg7bffxpQpU7BhwwaXNeP8sGPHDgCwXJ+KFSuicuXKjt+B69pp7dq1sXLlSjz99NNISEhAcHAwRowYgSlTpuTpjx6oQmTEiBHK1S4sWbJEAVDbtm27YZljx44pAKps2bLqzz//dGxftmyZAqC+/vprx7ZJkyZZ9g1Aubu7qz179mjbU1JSFAA1adIk436fe+45FRERoW3z9fVV/fv3t5Tt3r278vDwUEeOHHFsO3nypPL391dt2rRxbJs3b54CoJo0aaIyMzMd21999VUFQC1btuyG54HYy9q1a1WpUqVUqVKl1J133qnGjx+v1qxZo10Xpa6PHw8PD3X48GHHtt9++00BUG+99ZZjW/a1PXbsmGNbRESEAqBWr15t2f+NxlJxoV+/fsrd3d1472ZlZSmllHrxxReVr6+vOnjwoPb7hAkTVKlSpdTx48eVUn/d4wEBASo5OVkru23bNgVAzZs3z7Kf/v37W+7RiIgI1blzZ21b9rUxtWHa14cffmj57emnn1YA1KVLl3JtIyf16tVTMTExN/z97bffVoGBgY5jjomJUfXq1XO5fcnYsWMVAPX99987tqWlpamoqCgVGRmprl27ppRSasOGDQqAqlSpkjp//ryj7Oeff64AqFmzZimllNqxY4cCoBYtWpTrfrOfuxs2bMhTfzt37my5frkxffp0BcAxbnLStGlT1aJFC4cdEBCggoODlaenp3ruuefU4sWL1WOPPaYAqAkTJuSpn8Xmk2/257bly5fjypUruZZ9+OGHERwc7LCz/1o9evSo0/3ExMTkWVdZuXKl43Nvbly7dg1r165F9+7dUa1aNcf2ChUq4LHHHsMPP/yA8+fPa3WGDh2qvVUPHz4cpUuXtv0vYHJj7r33XmzZsgUPPPAAfvvtN7z66qvo2LEjKlWqhK+++kor2759e+0N8rbbbkNAQIBLYy8qKgodO3a0vf+FSVZWFpYuXYquXbsa3+ayv7IsWrQIrVu3RnBwME6fPu341759e1y7dg2bNm3S6vXs2dMhxdjJgAEDoJRy+ln94sWLAGB0LPPy8tLK3CxnzpzB888/j+eee862Y165ciWaNWuGVq1aObb5+flh6NChiIuLw969e7Xy/fr1g7+/v8Pu1asXKlSo4HgOZb+BrlmzJtfPuZMnT4ZS6pa+nQLOr0/Oa5Oeno6zZ89iypQpeOGFF9CzZ098/PHHuO+++zBr1iykpaW5vN8iN6Gmp6cjKSnJ8S/bBT0mJgY9e/bElClTUK5cOXTr1g3z5s3D5cuXLW3k1DQAOCZXV7THqKioPPU3KSkJ27dvd2lCTUlJQUZGBmrVqmX5rU6dOsjKyrLoEjVq1NBsPz8/VKhQgWsYC5imTZviyy+/xNmzZ7F161ZMnDgRaWlp6NWrl/bwkWMPuD7+bsXYKw6kpKTg/PnzTj+VHzp0CKtXr0ZoaKj2r3379gCszl+Ffa6yncVMz59Lly5pZW6WZ599FiEhIXn2Js+N+Pj4Gz6Hsn/PiXwOubm5oXr16o7nUFRUFP75z3/igw8+QLly5dCxY0e88847LmnRtwJn1yfntcn+/6OPPqqVe/TRR3Hx4kXt87AzityEOmPGDFSoUMHxL9vRIHtx8ZYtWzBy5EgkJCRg0KBBaNKkCdLT07U2buRBqVwQmvN6E6xatQpeXl5o165dnuqR4omHhweaNm2KqVOnYs6cObhy5QoWLVrk+L0gx15JIisrC/feey/WrVtn/NezZ0+tfGGfqwoVKgAAEhMTLb8lJiYiJCTE5WVRuXHo0CG89957GD16NE6ePIm4uDjExcXh0qVLuHLlCuLi4vDnn3/e9H7s4LXXXsPvv/+OZ555BhcvXsTo0aNRr149nDhxosD74uz65FyGk/3/sLAwrVy2w2FenECL3ITar18/7Ub6+OOPtd9btGiBl19+Gb/88gs+/vhj7NmzB5999tkt7VNuzj8rVqxAu3btLDe4qU5oaCh8fHxw4MABy2/79++Hu7s7qlSpom0/dOiQZqenpyMxMTFfi5yJvWR/wjTdtHZSnJ3PQkNDERAQ4HTJQ3R0NNLT09G+fXvjP9Obv6Qgz1OlSpUQGhqKX375xfLb1q1bLetg80tCQgKysrIwevRoREVFOf79/PPPOHjwIKKiohzeqXkhIiLihs+h7N9zIp9DSikcPnzY8hxq0KABnn32WWzatAnff/89EhIS8O677+a5fzdL9vmX1+fkyZM4ceKEdn2aNGkC4Pq5lmUB5Okze5GbUKtVq6bdSHfddReA638lyL/ys0+K6bXeTnx8fABcd+vPyZUrV7Bu3Trj515fX19L+VKlSqFDhw5YtmyZ9sn21KlT+OSTT9CqVSsEBARodd577z1NM54zZw6uXr2K+++//+YOirjMhg0bjG+Y2fqR6dOZnZjGUnHB3d0d3bt3x9dff22cfLLPa+/evbFlyxasWbPGUiY1NfWG0W1ykh3s4GbOVV6WzfTs2RPLly/XZJpvv/0WBw8exEMPPeTYduXKFezfvz9ff3jVr18fS5YssfyrV68eqlatiiVLlmDw4MF5brdTp07YunUrtmzZ4th24cIFvPfee4iMjLT4kXz44Yealrh48WIkJiY6nkPnz5+3XKMGDRrA3d1dez7nZdmMq5jOb7169VC7dm289957uHbtmmP7nDlz4Obmhl69ejm2PfzwwwCA//73v45tWVlZmDdvHkJCQhwTrisUm2UzCxYswOzZs9GjRw9ER0cjLS0N77//PgICAhzLVW4V3t7eqFu3LhYuXIiaNWsiJCQE9evXd+hDpgm1SZMm+Oabb/D666+jYsWKiIqKQvPmzfHSSy9h3bp1aNWqFZ544gmULl0ac+fOxeXLl/Hqq69a2snMzMQ999yD3r1748CBA5g9ezZatWqFBx544JYeM/mLUaNGISMjAz169EDt2rWRmZmJzZs3Y+HChYiMjMTAgQNv6f5vNJaKC1OnTsXatWsRExODoUOHok6dOkhMTMSiRYvwww8/ICgoCE8//TS++uordOnSBQMGDECTJk1w4cIF7Nq1C4sXL0ZcXBzKlSuX636io6MRFBSEd999F/7+/vD19UXz5s3zpLcuWbLEpWUzAPDMM89g0aJFaNeuHcaMGYP09HRMnz4dDRo00MZEQkIC6tSpg/79+zvWxQLX15VmO1ulpKTgwoULeOmllwAAbdq0QZs2bVCuXDljhKzsZUTyt8mTJ7u0LGXChAn49NNPcf/992P06NEICQnBggULcOzYMXzxxReWpSIhISFo1aoVBg4ciFOnTmHmzJmoXr06Hn/8cQDXlxuOHDkSDz30EGrWrImrV68iNjYWpUqV0j7X52XZzO+//+5w+jt8+DDOnTvnOD8NGzZE165dcz2/06dPxwMPPIAOHTrgkUcewe7du/H2229jyJAhWjS+bt264Z577sErr7yC06dPo2HDhli6dCl++OEHzJ07N2+f7vPkE2wzeVk2s337dvXoo4+qqlWrKk9PT1W+fHnVpUsX9csvvzjKZLvUT58+3VIfYtnLjZbNjBgxwrj/zZs3qyZNmigPDw9HW0899ZSqW7eusfz+/ftVmzZtlLe3twKgLXvYvn276tixo/Lz81M+Pj6qXbt2avPmzVr9bPf97777Tg0dOlQFBwcrPz8/1adPH3XmzBlnp4vYyKpVq9SgQYNU7dq1lZ+fn/Lw8FDVq1dXo0aNUqdOnXKUu9H4iYiI0K7/jZbNyCUc2eQ2looL8fHxql+/fio0NFR5enqqatWqqREjRqjLly87yqSlpamJEyeq6tWrKw8PD1WuXDnVsmVLNWPGDMcSpdzucaWuL5GrW7euKl26tLb8xe5lM9ns3r1bdejQQfn4+KigoCDVp08flZSUpJXJ7rO8btnPINO/Gy3Ry+ZGy2bGjRun3Nzc1L59+5z2/ciRI6pXr14qKChIeXl5qWbNmqnly5drZbKXzXz66adq4sSJqnz58srb21t17txZxcfHO8odPXpUDRo0SEVHRysvLy8VEhKi2rVrp7755hvjMbuybCb7Wpj+5TyXNzq/Sl1fbtmoUSPl6empKleurJ599lnLcjelro+9MWPGqPDwcOXh4aEaNGigPvroI6d9lLgplc+QEAR169ZFly5djG+WN8v8+fMxcOBAbNu2zbjcgBBCJM2aNUNERITmKEcKjmLzybeokZmZiYcffhi9e/cu7K4QQgjOnz+P3377DQsWLCjsrvxt4YSaTzw8PPKdpYIQQuwmICDgljtoktwpcl6+hBBCSHGEGiohhBBiA3xDJYQQQmyAEyohhBBiA5xQCSGEEBtw2cu3KMcTles0Z8yYodlff/21Zpti/2bHbbwRpliiY8eO1ezq1atrtswOUZQzxBSWlO7KuJIB52WS+Ox0Wbm1KVP+SW9I0/HXrl1bs9944w3Nlin0Pv/8c0sbMj6oxBT954knntDsnKn+AOu4cyXUnjwnBXW9C21cuYsxYHrSBQm7orBlghxT3gMZTfCQsDOtVWqKR40McihDsWca9lvmmnVbThobtsm09DK9wHlhu7SS1UfY9kUUzJWi6vrDN1RCCCHEBjihEkIIITbg8rKZgvrkKz/njRw5UrPvu+8+Sx2Zakh+vpXZQOQnQsCa8y5nhgLgr/x6Odm3b59mywwKsl8///yzpY2lS5dq9sKFCy1lCoLC+oQir7eHh4eljAzULW15PU3HIsfvkCFDNPuee+6x1JFpm+Qn+zZt2mh26dLW74ryk++FCxc0OztDSk7kuJL5fmWw9507d1raWLFihWavW7dOs+Un8FtFoX3yrSCeV9UMheTnSvkNtJ6wswxtnBb278I2fPGPEJ+JZej+ja3FhjPWNvz36nZd8XtXaxXL25M8/EvCtiZ3sx7O2kixIc5Q6RbAT76EEEJICYYTKiGEEGIDnFAJIYQQG+CESgghhNhAoTolNW5sXS313HPPaXbZsmU12+RMIR2I5CFJJxY/Pz9LG9JZ5OrVq5rt7S09FoBLl3QZX66XlH01Oa1IJ5zg4GDNbt1aeigA587JlWs3T2GJ/PKcmc6zvH7yPMrfTfljp06dqtmenp6anZgoFxRax4S8VoGBgZptcjA6fVr3WpEORnKcAdfTcOVEOm5JTI5csi8+ProLSrdu3Sx10tLSct1Pfig0p6RA8bxqZCjkL+wQYQcK2+rLCMihpvt+weu/1ioNhC2df87fJTZIbyEA2K6btcRp7mSoIlfSy2alw1E6rMjV+jWE/Z6hzq1wf6NTEiGEEFKC4YRKCCGE2AAnVEIIIcQGClVD3bJli2Wb1B2lriO1L8CqoclDkrZJy5TtZmVl5WoDzrVb+btJL5MxZaW+K3U8AHjggQcs226WoqKhSq3PVEZq1/La7N6929KGHCMy+IdpfPv76yKbDNwh+2VqQ/bt4sWLmm26vnLcSEw6s0TqsPJYTLGrBw0a5LTdvFJkNNQWhkLSlWKfsOWl6Whoo7qwhYaKw4Y67YS9Vdjhwk41tLFTN6uJIdPIUEU+9S4Ke6Ow0wyacYQQXqUO+6Bhv3PkbWHDkKCGSgghhJRgOKESQgghNsAJlRBCCLEBl/Oh2kGjRo0027SmVG6Tgc9N+qdJm8wNU3ln3+RNv0sNzaSz5kTqeIB13anU6UxrG+vW1UNh792711KmuGI6h/K8SY1R5i39888/LW1Ibbp8+fKanZlpTVwp9U3ZDzlWTWPEdM3z8jtgXWcqz5FJu61SpYpmy/WwctwBQKVKlTTbWS7XIo08Jaal21KuF0HoQ5J1+0+pjwJWvbOLsLcZ6sgA+nK9q5S3DTlVoV8qxB3XbetTw1JFyrAWSfmKYf1rvEiqWu6Ibh8z7LeLuC2WG8qUFPiGSgghhNgAJ1RCCCHEBjihEkIIITZQoOtQN23apNnVqlmz/sokzlLbckWnkmvwJK7E1JX7MWl7UouV50iubXVF/3VlzeyGDRs0+4UXXrCUySuFtl5QnDOTZiy1aqltfvjhh5rdvHlzSxtSQ5RjRq4PBaxrN6WmKMeM6R5xFofYtF+JvDayX6ZrJ9uVdUzxoL/44gvN/uCDD5z2zRmFNq7KuLAOtaywN+vm/1J0+zVDE3vCxAaZlNzk3iDDc68UtnwsmvRf0TdU1s1Sh6xVrpUTG+Q6Wxns1xreGoHi0XqujW7X0R/xAID+wp5gLZJnuA6VEEIIKcFwQiWEEEJsgBMqIYQQYgOcUAkhhBAbKNDADhUqVNBsUyB0GfhbOiWZHD9k0maZ+LlyZV2xNwUkl3WkQ5GpjiyTkqJ7CiQn6yvDXXHskscvAz0AQNu2bTXbDqekwkKeE1OwDzkGZGCHkBA9M7TpPEsnBum4Zko6Lx3kZLJ7uV/TtQoICNBs6XQlx66pjHSGkvuRwU8A6zgynVfJXXfpma3z45R0K5Jo5AuZc92aCwCIE7Zw9BExDIwB5y+c0u1EYV82OEOVX6TbyeLyNdyl26b84jLlfIpwQjKlTzil++UhSvy+V+aXrwIL50RnAoQT0gnDfiMN2/KMPOAiCt9QCSGEEBvghEoIIYTYACdUQgghxAZuqYZ69913a3ZQUJBmy+ThgFUfkwEVTMHEZbB4mbQ7Pj5es0+csH7plzqUDJ5uWggfERGh2VIPkwEGdu7caWnDFJQ9J6aAEnI/DRs21Ozffvst1zaLEs6SspvK3HHHHZpdpowusJw5I6Kcw3qe5Xk1BQO5/fbbNVsGS5DXQWrmgDWghNRdT50Sohusge1lQvUaNWpottR6AavmL7Vc07iSATTq1dOjFOzZs8dSR1JkFtxLOdsUHEHogTJ/uIhZgG8MTcg49zIWQvBP1jrJMhi+6NtvHcTvkYYdxwlbDqPd1io+4taSo/V+oTOvMpwzH+FKcl5I5kGGy79E2DK+hJB2zRSRYeUMvqESQgghNsAJlRBCCLEBTqiEEEKIDdxSDbVdu3aaLXVKUyJoZ8Hia9WqZamzfft2zZaakzOdErAGLU9NTdXss2fPWurIvv30ky6YSN21VatWljY2b9YjcsvjlwHYAeuayfbt22t2cdJQXUFqe02aNNFsuebSpM3LMSGvndQLAWvidmeJvU36r9R3pe5q6qvUVXft0hcmymMx9V3WkfqvaVzJdeLy/j1yRM8mLftRpJCvClbJGBA51nsIfVAencwlDgANhC3rmJ48Z+UwkZfPX9iphkakRiyFyQqwkCGW/We01e1VQuzsLAPwA1gl7DChbV6GFam8y8M7LU+iWIcLALhq2FYE4RsqIYQQYgOcUAkhhBAb4IRKCCGE2AAnVEIIIcQGbqlT0nPPPafZSUlJmj1+/HhLnTvvvFOzv/32W802OTLJwN8ygMKQIUM027SoXQa6l44/pgX40tkpMVFf1l2nTp1cfweszlBhYWG57gOwnrc1a9ZYypQkpLPP3LlzNVs6jI0dO9bSxm233abZ0hlMBmAArOf+4MGDmv3YY4/lWh6wXl9nge8Bq8OUHPNVq1bVbOlAB1gdpiIjIzXbFCx/3Lhxmr1qlXRB0ZHOYqb9FhryFrd21RJQ4f/Ez/uEHWloIkTYocK2hhgBIE99NWFvEbY1Xgh8hZOOTDMi/K0AWGM/nKut27WEE9IOQxuy3VPS+ckTFlLlSZB+eNIJSZ7UG7RbFOEbKiGEEGIDnFAJIYQQG+CESgghhNiAm3IxmnVBaSODBw/W7AkTJmj2sWPHLHVq19bFALnQXy5qNwXHl4vUZYAFUzJ0mZTc319fsiwXz//+uwylbV1M/+GHH2r2a6+9ZqlzKyisoOZyXJl0Odk3kwbujL59+2r2008/rdlSHwWswfGlri41U1NQfmfjynS8cj8yOIRMEHH06FFLGzIZ+tKlSzX75ZdfttSR10KedxmYxfRMkNqsK4nNbwWWvsnAB4A1CoE1xoaOweOkitAyg8TvlQ3NyKeAHDWX5KPmdliRgQ7kq5FIOA4AEO4ntcRtJOXQjYbjrSr2e/w2UcD6iLMme5euBjKwg8mzR+jI6kTRjJbPN1RCCCHEBjihEkIIITbACZUQQgixgVuqoco60nZFCzt0SBcDXFkvKNf6yTqmwOBSl5LalkxaDgDh4Xq4bKlbSb0sI0NGtLYmpW7durWljET2zRSUPa8UloYqz7tpnMm1nBJ5/U1J6OVYk4HvTcnBpf4nNXOZlFxqjKZt8likvg9Yk4FLTVUei0wmDljHWrNmzSxlJLJvUruV+zXpv3LMm+6bgsDNR4wj6y1vXTQqLoWPWCKcoT9WriNOfSXxs3VEWOXPJGFflmKmab9y7aq8bUyn/UfdrCrkbTmKTG9bKWLtKvYbCknkSZCaqXwsBhnaEMnP1VFqqIQQQkiJhRMqIYQQYgOcUAkhhBAbuKWxfKUulx8dVuo0Jq1PlpG6lFwfatIcZbuyTdN6uqCgoFz3I2PM2qVT2qGZFhXkmDDpn/K8SZ1OtiG1P8Cq5Umd3aQHyr7IcSXXJpvGtzM/AnksgHUdtRxXMkm56ZyZjicnJl1aasRyDa0cd6bzXFjrTi3IU2ISM2U2cLEg1KJuS4EUAMTy5YQg3Q5KtVaRkqHlSsiFqSb9Vz4CpG141ErNVBZJFbbxbSvItDEHYYZtDwpbZhyXxyt1WgCwhg4okvANlRBCCLEBTqiEEEKIDXBCJYQQQmyAEyohhBBiA7fUKUmSH6cc6eTgShvS4UIuSDc5jzgLliCdWABrcmhnAQhMi9ylg4krOAtiXpxwJbCDM2c2V5yD5PV0JRiEM+cnOTZN11+OPVlHOiABwLlzeuZrZ8dnSmxuCtSfW78AIDhYTx99+PDhXPtqco7LT+KCW0KAsK3+U9ak1eI2Ui3F7ybHJnn76rE+kGoYur5iP37idw9xOVNFUHsAQJywywrb8Cg6HiU3CFtcOuNjxZpDQscapwR4TNgydk1jYZ+FlfOGbUUQvqESQgghNsAJlRBCCLEBTqiEEEKIDRSohnqrtD9nGpsrSayd9c3TUwou1qDkBw4c0Gypy5l0uvwEuyjOmqnEFNhAIs+bDCggtUtXgn+4cm0kzoLDuxKUQtqmOnJcHT+ui12uBFgwBerPiSlBhClReU5c8UXIz3i+JSS6UEaKlxHCDhS26Wkp25CHb5CUvURkB5lPXMabsG6AWWfMySnDNplkvZGwRQD6LKlDA9bADj8LWwbtB4Auhm05kTq09VFr1sCLIHxDJYQQQmyAEyohhBBiA5xQCSGEEBsoUA01P7ii2zjDlQDsEmfaF2DVoZwlFJdBzm/UrjNK0jpUV3C2tlFqiqb1kfLaSNt0DuV+ZR1Xxqaza+MsiL1pv3I9s0kPdabVysD3riD7YTrPrtxbRQap3Uk5P1XY1uW+gFwjKk+rIdG3lCYjhS01VR9DvoELYr/nXVinWSpOty1XT8rupqEpt0kNeafzKtfkrJMi7DTDfuV+iijFaPQTQgghRRdOqIQQQogNcEIlhBBCbIATKiGEEGIDRd4pSTo+uOL4IW3p+OGKY5Nsw+QYI9uRC+xd6TvJO9I5Rl5fkyOQs+tpujbSwUZez/yMK4kr+3UWuMLUhgyY70rQemdOdiYnJIkrTlZFFplPQPp6mZ6W0mFI5jow+H5dELb0BZKui6bY+JY4B3KDIa7HNRkMQvYtWNgmf7pjwnYht8e1yk7qSCckOiURQgghf284oRJCCCE2wAmVEEIIsYEir6G6EsT8ViQ1dmW/UlNypm2ZtL1itRC+kJC6nLze0nYl0IUMsiED0pvakWVcSfRtCrrgDBm4QfZDjjvTGHIWHN+Eqf95pVgFGZHB4qV2J5Nlm25VKSu3EPaP1irJQhQNkr8Lu6pht38I20P0NdNwGWoI+5DUjGVgi1qGHYcI24UkBGVO6LYhToVz8lWp4OHTnBBCCLEBTqiEEEKIDXBCJYQQQmygRGqosowrwfELQoc17SM/GtvfDWfrH/MT6F5iWsvpLKG47JdcL2rClXWasoyz9aBXrlgFJlPScSI47eR3maTbdKtK6V0GwzcMXV9hS+kyXNimuPey2Uy5/tWAlEzLimFzSZyPC1IvBayLZO1A3nqm5dzFZHkz31AJIYQQG+CESgghhNgAJ1RCCCHEBoq8hurKWk6pdTmLfWrS05zprqb9OtPUZJumNnx8ZDphcrO4shbS21sXnUxj4uJFfXGfn58eUDQ1NVWzTes4IyMjNVte73PnzlnqyHGUlmYKbvoXJv3XlMzeGVLPl/3IT/zjYo0cRoZk4ZYytYX9nbVKTWFvFXYPF3b7fUux4U5hf22tc+Fg7lVkqN/fpNgLAGUN25xwRcbylTGE5fA2yf/F5DFZgkY/IYQQUnhwQiWEEEJsgBMqIYQQYgOcUAkhhBAbKFCnJDsSbLuS5NiVgArOcMWxRR5Pfo6vWCdkLiLk51q5gnRuy8jI0OzAwEDNTkpKsrTh6emp2TJIg7RN2+TxudKGr6/Jo+QvpFMWYHXCckaJH7vSG8gUPEFuk0PREBwhWQSUby9+XyHsSYbdzqkuNkjfNhnFAUAVYUs/Hzlifksx7LiNsNcKu5mhjvS6kshZSCY6B4rNq18x6SYhhBBStOGESgghhNgAJ1RCCCHEBgpUQ81P8mFnQRoA50EY8rPf/ASDcIZJx7MjqfPfHXleTddKjiNZx6QfyqDz5cuX12ypmYaFhVnacBYc4exZuZzeqn9KrVKOGVOCBWfBIEwB9YODdfFKBp2QAfdN49/UbrFFiowZhjJOItkHGRJwRwt7QQXd7i/qmDRUS1/SdbOFQUP9VdhytFaSFSIM+91n6kwO4gzb+gh7mbBl4AdTEIcEJ/stIvANlRBCCLEBTqiEEEKIDXBCJYQQQmygyAfHz09CZme6VX73I7EjKblpDSHJG66sB5bbvLy8NFuuFzVtO3NGF6aCgoI0+/Rpa8bqqKgozU5OTtZsU3IEZ8kepGZqGrv50TLlulp5/Jcv6wszL12SUc7tWWteZJBPR1OCcbmtom6mGtahbhJrRtsIzXSBCA4/2HApj8SIDdN107T0U3Y1WdgWb44AQyPOXD5MM0pPYdcR9gEnNmAOmF8E4RsqIYQQYgOcUAkhhBAb4IRKCCGE2AAnVEIIIcQGipxTklzUfuzYMc02OWDIBefOnIVMv8tADs6CRbiCK0Ep8tMu0ZEBBkyBDmQw+P379+fahmmbHGcyKIMpsMOuXbs0OyRE91KRYwSwjs/0dH3VfsWKuueLKWGEs3vAdB+lpOjR0C9cuKDZ8p4wnTNXklcUWaQ/lQx8L51pAGsA/UPCjoKVw7qZIJyUHhROSP+VgfABPDBKt7/y0+0sGXACwCUR66OKfnmx/m5RQQbcBwBn+RP8DduEwxS2CFv65Vn9AwFr/JMiCd9QCSGEEBvghEoIIYTYACdUQgghxAaKnIYqkTqNSbeRelF+FrU701BdWbCeHz3UlOiZ5A05JkzBEqT+Ka+naczI6ykTjMvfTYEdZMB5VwLbS81UHo/8XR4bAAQEmFbl/4UM0gBYx6LUas+f1yO/mxI7mDThYoO8fYUuaUye/Yew5WkVeikAlBXapEz8LZvoYGjjKxFQ30cEh8gwBKFoIjTTH2QBucEUHL++sHcI2xSU4UFhvy7sr4VtCoRf0bCtCMI3VEIIIcQGOKESQgghNsAJlRBCCLGBIid4OEvsbVo/ZwrSnROpl5nakPuR/XAlmbisI9fk2RXE/O+OszXCUusDrMHwpQ4pbcCaYFteP7lmWu7D1DepmZrGlQxSL49Xrn+V5QEgNTXVss0Zsq/ynLgynu1IGFFoSN1R3pqrDHVkom9x+Hcb1nK2F7bMBb5d2EcNu5X7yahmKqTzqwzUrw9f1PxNtw+a1px+73w/FuR5/E7Y8nYV/QIA5P6ILzLwDZUQQgixAU6ohBBCiA1wQiWEEEJsoEA1VFfWcsoyMsmxad2erCOTdkvb1A+p/ThL8gxYNSRnax1NmpNMUk2cI8+rHBOmpO3y+rmiXUtNVF5f2aYrcXmlTmkaE3K/Fy/qYpZcY2qKn1upUiXLNmdIzdhZInPTWlbT8RQbZAxZufbRJA+LV5JaB3W7kaFKeWEfF7ZYLgrr6mZY18zKoWdahizj+67LvR/VT1ibOGwNV+0cuc5UxjcOEraMhwwAhkTtRRG+oRJCCCE2wAmVEEIIsQFOqIQQQogNcEIlhBBCbKBAnZJcCR4vkxqfOnVKs02BwOUC9AoV9MjRrgSgl44s0sFEOkeZysi+y4ATpoADiYmJlm0kd6RTknTKMQVtl4498rybHNXS0vSMzDVq1NBsOa5MTknOxpWpjrxP5PHIfsnE4ADwww+W0OdOkUEmZN+lI1d+kkEUaeSlkMEETEHbxamXITb2GqrIWPcbhS1dzC6YEm7L/A/SNiXkThK28O/0ED5melqH69TXH8fYbShjQfZNRrKQ/XKWxLwIwzdUQgghxAY4oRJCCCE2wAmVEEIIsQE3VeKEEEIIIaTg4RsqIYQQYgOcUAkhhBAb4IRKCCGE2AAnVEIIIcQGOKESQgghNsAJlRBCCLEBTqiEEEKIDXBCJYQQQmyAEyohToiLi4ObmxtmzJjhtOzkyZONgfZJ4TNgwABERkZq29LT0zFkyBCEh4fDzc0NY8eOLZS+FWXmz58PNzc3/PLLL4XdlSJPkZ5Q3dzcXPq3cePGwu4qKUSK6zjJyMjA5MmTc+3X2bNnUbp0aXz++ecAgKlTp2Lp0qUF08FiyMmTJzF58mTs3LnTpfJTp07F/PnzMXz4cMTGxqJv37553ue+fftw3333wc/PDyEhIejbt68xA5CJS5cu4ZVXXkHdunXh4+ODSpUq4aGHHsKePXssZdetW4dWrVrBx8cHwcHB6NWrF+Li4vLc3+LEk08+icaNGyMkJAQ+Pj6oU6cOJk+ebMkwdiPOnTuH8ePHo0aNGvD29kZERAQGDx6M48ePG8svXLgQd955J3x9fREUFISWLVti/fr1Lve3QNO35ZXY2FjN/vDDD7Fu3TrL9jp16hRkt0gRoyiNk2effRYTJkxwqWxGRgamTJkCAGjbtq2xzJo1a+Dm5oYOHToAuD4B9OrVC927d7ejuyWOkydPYsqUKYiMjESjRo20395//31kZWVp29avX48WLVpg0qRJ+drfiRMn0KZNGwQGBmLq1KlIT0/HjBkzsGvXLmzduhUeHh651u/Tpw+++uorPP7442jcuDFOnjyJd955B3feeSd27dqFiIgIAMDy5cvRrVs3NG7cGP/5z39w/vx5zJo1C61atcKOHTsQGhqar/4XdbZt24bWrVtj4MCB8PLywo4dO/Cf//wH33zzDTZt2mRJOZiTrKws3Hvvvdi7dy+eeOIJ1KxZE4cPH8bs2bOxZs0a7Nu3D/7+/o7ykydPxgsvvIBevXphwIABuHLlCnbv3o2EBFPevhugihEjRoxQrnT5woULBdAb+0lPTy/sLpQIXB0nrnLs2DEFQE2fPt2W9q5du6YuXryoUlJSFAA1adKkG5bt27eviomJcdi+vr6qf//+tvSjJHHlyhV1+fJltW3bNgVAzZs3z6V6UVFRqnPnzvne7/Dhw5W3t7eKj493bFu3bp0CoObOnZtr3RMnTigA6qmnntK2r1+/XgFQr7/+umNb3bp1VfXq1dXly5cd23bu3Knc3d3VP//5z3z33xXmzZunAKht27bd0v24yowZMxQAtWXLllzL/fjjjwqAevvtt7Xt//vf/xQA9eWXXzq2bdmyRbm5uWnnPD8U6U++rtC2bVvUr18fv/76K9q0aQMfHx8888wzAIDk5GQMHjwYYWFh8PLyQsOGDbFgwQKt/saNG42fA7N1s/nz5zu2JSUlYeDAgahcuTI8PT1RoUIFdOvWzfLZZdWqVWjdujV8fX3h7++Pzp07Wz7hDBgwAH5+fjhy5Ag6deoEf39/9OnTx7bzQlznl19+QceOHVGuXDl4e3sjKioKgwYNMpZ97733EB0dDU9PTzRt2hTbtm3TfjdpqG5ubhg5ciQ+/vhj1KtXD56ennj33XcdbxVTpkxxfJaePHmyo15WVhZWr16Nzp07O9q5cOECFixY4Cg/YMAAR/kdO3bg/vvvR0BAAPz8/HDPPffgp59+0vqSrYdt2rQJw4YNQ9myZREQEIB+/frh7FlTVmr7SEhIwODBg1GxYkV4enoiKioKw4cP1xKop6amYuzYsahSpQo8PT1RvXp1TJs2TXuzzKlpz5w503E9Zs+ejaZNmwIABg4c6DhH2fdwTg01+74/duwYVqxY4SgbFxeHc+fOYf/+/Th37pzTY/riiy/QpUsXVK1a1bGtffv2qFmzpuMz/Y3IThQfFhamba9QoQKAvxLY//nnn9i7dy969OihvfE2bNgQderUwWeffea0nzfClTGTTUZGhtMx48q9lJiYiP3791sS1rtK9jVMTU3Ntdz58+cBOD+/ADBz5kyEh4djzJgxUEq5/ElZUqQ/+brKmTNncP/99+ORRx7BP/7xD4SFheHixYto27YtDh8+jJEjRyIqKgqLFi3CgAEDkJqaijFjxuR5Pz179sSePXswatQoREZGIjk5GevWrcPx48cdFzk2Nhb9+/dHx44dMW3aNGRkZGDOnDmOTzM5nSKuXr2Kjh07olWrVpgxYwZ8fGRqe3KrSU5ORocOHRAaGooJEyYgKCgIcXFx+PLLLy1lP/nkE6SlpWHYsGFwc3PDq6++igcffBBHjx5FmTJlct3P+vXr8fnnn2PkyJEoV64cGjZsiDlz5mD48OHo0aMHHnzwQQDAbbfd5qizbds2pKSkoFOnTgCuj60hQ4agWbNmGDp0KAAgOjoaALBnzx60bt0aAQEBGD9+PMqUKYO5c+eibdu2+O6779C8eXOtPyNHjkRQUBAmT56MAwcOYM6cOYiPj3dMNHZz8uRJNGvWDKmpqRg6dChq166NhIQELF68GBkZGfDw8EBGRgZiYmKQkJCAYcOGoWrVqti8eTMmTpyIxMREzJw5U2tz3rx5uHTpEoYOHQpPT0/06NEDaWlpeP755zF06FC0bt0aANCyZUtLf+rUqYPY2Fg8+eSTqFy5MsaNGwcACA0NxaJFizBw4EDMmzdP+4NFkpCQgOTkZNxxxx2W35o1a4aVK1fmek6io6NRuXJlvPbaa6hVqxZuv/12nDx5EuPHj0dUVBQeeeQRAMDly5cB6BNANj4+PtizZw+SkpIQHh6e6/4kdo8ZV++liRMnYsGCBTh27JjFSczE1atXkZqaiszMTOzevRvPPvss/P390axZs1zr3XHHHfD19cVzzz2HkJAQ1KpVC4cPH8b48ePRtGlTtG/f3lH222+/RcuWLfHmm2/ipZdewpkzZxAeHo5///vfGDlypOsn9abebwsY06e8mJgYBUC9++672vaZM2cqAOqjjz5ybMvMzFR33nmn8vPzU+fPn1dKKbVhwwYFQG3YsEGrn/2ZL/vT0dmzZ51+9ktLS1NBQUHq8ccf17YnJSWpwMBAbXv//v0VADVhwgSXj5+4Rl4++S5ZssTp56zssVC2bFn1559/OrYvW7ZMAVBff/21Y9ukSZMs+wag3N3d1Z49e7Ttzj75PvfccyoiIkLbdqNPvt27d1ceHh7qyJEjjm0nT55U/v7+qk2bNo5t2Z/vmjRpojIzMx3bX331VQVALVu27Ibn4Wbo16+fcnd3N57nrKwspZRSL774ovL19VUHDx7Ufp8wYYIqVaqUOn78uFLqr+sREBCgkpOTtbK5ffLt37+/5XxGRERYPvlmnyNnn42z9/Xhhx9afnv66acVAHXp0qVc2/j5559VdHS0AuD416RJE5WYmOgoc+3aNRUUFKTuuecere7p06eVr6+vAqB++eWXXPdjwu4x48q9pNRfz75jx4651M8tW7Zo56dWrVqW5/WNWL58uapQoYJWv2PHjiotLc1R5s8//3Tc335+fmr69Olq4cKF6r777jPOLblR7D/5AoCnpycGDhyobVu5ciXCw8Px6KOPOraVKVMGo0ePRnp6Or777rs87cPb2xseHh7YuHHjDT+NrVu3DqmpqXj00Udx+vRpx79SpUqhefPm2LBhg6XO8OHD89QPYi9BQUEArjt9OPsE9fDDDyM4ONhhZ78BHT161Ol+YmJiULdu3Tz1beXKlY7Pvblx7do1rF27Ft27d0e1atUc2ytUqIDHHnsMP/zwg+PzVzZDhw7V3qqHDx+O0qVLO32ryg9ZWVlYunQpunbtanyby34jXrRoEVq3bo3g4GDt/mnfvj2uXbuGTZs2afV69ux5S5xxBgwYAKVUrm+nAHDx4kUA158/Ei8vL63MjQgODkajRo0wYcIELF26FDNmzEBcXBweeughXLp0CQDg7u6OYcOG4dtvv8XEiRNx6NAh/Prrr+jdu7fjc7mz/UhuxZhx9V6aP38+lFIuvZ0CQN26dbFu3TosXboU48ePh6+vr8ufZENDQ3H77bfj5ZdfxtKlSzF58mR8//332nyR3daZM2fwwQcf4KmnnkLv3r2xYsUK1K1bFy+99JJL+wKK+LIZV6lUqZLFmy4+Ph41atSweIFle3rGx8fnaR+enp6YNm0aVq1ahbCwMLRp0wavvvoqkpKSHGUOHToEALj77rsRGhqq/Vu7di2Sk5O1NkuXLo3KlSvnqR8kf6SnpyMpKcnxL3tZQ0xMDHr27IkpU6agXLly6NatG+bNm+f4zJaTnDoZAMfk6or2GBUVlaf+JiUlYfv27S5NqCkpKcjIyECtWrUsv9WpUwdZWVn4448/tO01atTQbD8/P1SoUOGWLMNISUnB+fPnUb9+/VzLHTp0CKtXr7bcO9mf5uT9k9dzajfZn2BNYyV7MjR9ps3m3LlzaN26Ne6880688sor6NatG8aNG4cvvvgCP/zwA+bNm+co+8ILL2Dw4MF49dVXUbNmTdxxxx0oXbo0Bg8eDOD69csLt2LM5OVeygsBAQFo3749unXrhmnTpmHcuHHo1q0bfvvtt1zrHT16FO3atcOgQYPwzDPPoFu3bpg0aRJmz56NxYsXY9WqVQD+ukZlypRBr169HPXd3d3x8MMP48SJEzdcZiMpERNqboPWGTfSi65du2bZNnbsWBw8eBCvvPIKvLy88Nxzz6FOnTrYsWMHADgcJ2JjY7Fu3TrLv2XLlmnteXp65ur2TexjxowZqFChguNftvOKm5sbFi9ejC1btmDkyJFISEjAoEGD0KRJE8tfwaVKlTK2rZRyuv+8jtFVq1bBy8sL7dq1y1O94kz2MgfTvbNu3Tr07NlTK38z970dZDu3JCYmWn5LTExESEiI8e01my+++AKnTp3CAw88oG2PiYlBQEAAfvzxR8c2Dw8PfPDBBzh58iQ2bdqEAwcOYM2aNTh37hzc3d1RvXp1m44q/+TlXroZsv0NnDljzZ8/H5cuXUKXLl207dnnO/v8hoSEwMvLC2XLlrXc4+XLlwfg2h/NQAlxSjIRERGB33//HVlZWdqktX//fsfvwF9vGdJj7EZvsNHR0Rg3bhzGjRuHQ4cOoVGjRnjttdfw0UcfORxEypcvrwnepPDp168fWrVq5bDlw7hFixZo0aIFXn75ZXzyySfo06cPPvvsMwwZMuSW9Sk3558VK1agXbt2ln6a6oSGhsLHxwcHDhyw/LZ//364u7ujSpUq2vZDhw5pk3V6ejoSExMdDlB2EhoaioCAAOzevTvXctHR0UhPT7+pe6cgo1RVqlQJoaGhxghCW7dutayDlZw6dQqA9Y93pRSuXbuGq1evWuqEhYU5vFavXbuGjRs3onnz5nl+Q72VY+ZW30uXL19GVlaWUy/sU6dOOc5lTrI/R2efX3d3dzRq1Ajbtm1DZmam9rXz5MmTAOCytFBiX486deqEpKQkLFy40LHt6tWreOutt+Dn54eYmBgA1yfWUqVKWfSZ2bNna3ZGRobjM0420dHR8Pf3d3zS6NixIwICAjB16lSjhuBq9BRiP9WqVUP79u0d/+666y4A1//ylG+Y2Q/Cm/1U5Yxsr275x9yVK1ewbt064+deX19fS/lSpUqhQ4cOWLZsmfbJ9tSpU/jkk0/QqlUrBAQEaHXee+89bYzOmTMHV69exf33339zB2XA3d0d3bt3x9dff22cfLLPf+/evbFlyxasWbPGUiY1NdU4wUh8fX0d5fNLXpbN9OzZE8uXL9c+j3777bc4ePAgHnroIce2K1euYP/+/drbbM2aNQFY37S++uorXLhwAbfffnuu+54xYwYSExMdHsp54VaMGVfvJVeXzaSmphrLfPDBBwCg6fEZGRnYv38/Tp8+7dhWs2ZNKKUsy5c+/fRTANDO78MPP4xr165pyyovXbqEjz/+GHXr1kXFihVz7asDl92XigA38vKtV6+epWxGRoaqU6eO8vDwUOPGjVNvvfWWwyN45syZWtlHHnlElS5dWv3zn/9U77zzjrr//vtVkyZNNE+/HTt2qJCQEPV///d/6s0331SzZ89W9957rwKgFi9e7Gjr448/Vu7u7qp+/frqpZdeUnPnzlX//ve/VaNGjdSIESMc5fr37698fX1tPDskm7x4+b7xxhuqRo0aavz48Wru3LlqxowZqlatWiogIEAdPXpUKZV7YAcIL90befnmvPY5qVu3rgoPD1fvvPOO+vTTT9WuXbscC/vj4uIs5Tt16qR8fX3Va6+9pj799FP1008/KaWU2r17t/L19VWVKlVSL7/8spo2bZqqVq2a8vT0dJRR6i+PzQYNGqjWrVurt956S40cOVK5u7urVq1aOTxu7ebEiRMqPDxc+fj4qLFjx6q5c+eqyZMnq3r16qmzZ88qpa4HZGncuLEqXbq0GjJkiJozZ46aMWOG415JSUlRSuV+PTIzM1VQUJCqVauW+uCDD9Snn37quI52e/kqpdTx48dV2bJlVXR0tHrzzTfV1KlTVXBwsGrQoIHm4Zvd55we2pcvX1b16tVTbm5uasCAAerdd99VTz31lPLy8lIVKlRwHK9SSsXGxqru3bur119/Xb333nuqd+/eCoAaMmSIpU+uetHaPWZcuZfy0r8lS5aoKlWqqCeffFLNnj1bzZw5U/Xs2VO5ubmpO+64Qwtykb1aI+e9ePr0aRUeHq48PDzU6NGj1dy5c9WwYcNUqVKlVL169bT6GRkZql69eqpMmTLqqaeeUm+++aZq2rSpKlWqlFq5cmWu/cxJiZ1QlVLq1KlTauDAgapcuXLKw8NDNWjQwHiTpKSkqJ49eyofHx8VHByshg0bpnbv3q3dVKdPn1YjRoxQtWvXVr6+viowMFA1b95cff7555b2NmzYoDp27KgCAwOVl5eXio6OVgMGDNBc2zmh3jryMqFu375dPfroo6pq1arK09NTlS9fXnXp0kW7VrdyQt28ebNq0qSJ8vDwcLT11FNPqbp16xrL79+/X7Vp00Z5e3tbHtDbt29XHTt2VH5+fsrHx0e1a9dObd68Wauf/XD87rvv1NChQ1VwcLDy8/NTffr0UWfOnHF2um6K+Ph41a9fPxUaGqo8PT1VtWrV1IgRI7QHW1pampo4caKqXr268vDwUOXKlVMtW7ZUM2bMcCzZcBa5atmyZapu3bqqdOnS2j18KyZUpa5PTB06dFA+Pj4qKChI9enTRyUlJWllTBOqUteXbDz55JOqZs2aytPTU5UrV0498sgj2gSk1PXlNW3atFHBwcHKy8tLNWzYUL377rvGP4B69uypvL29HX+o5IadY8aVe0kp1yfUw4cPq379+qlq1aopb29v5eXlperVq6cmTZpkiSpnmlCVuv6H3KBBg1RUVJTy8PBQFSpUUI8//rj2x0o2p06dUv3791chISHK09NTNW/eXK1evdrpOcyJm1IueFQQQgqMunXrokuXLnj11Vdtb3v+/PkYOHAgtm3bZlzCQoo/YWFh6NevH6ZPn17YXfnbUWKdkggpjmRmZuLhhx9G7969C7srpBiyZ88eXLx4Ef/6178Kuyt/SzihElKE8PDwyHfmE0Lq1atnCchACo4S6+VLCCGEFCTUUAkhhBAb4BsqIYQQYgOcUAkhhBAb4IRKCCGE2IDLXr4FGSMzN0z9kDLwPffco9mjR4/W7J07d1rakMl5Dx8+rNmmWJk5U3kBsITJypkWCQB69OhhaaOoUFhSeunS+hDMTnuVE2chALOTEtzItgsZgPyJJ57Q7H379lnqyPBtv//+u2Znx5TOicyiImORyqwt2cHCc0MG/TYlf5Bl5JiQ94CpDRkeUIbrLCjcPMVzwtdQ6IKTRuThWQ/XeT8M2+Sd1lDYHsLOMLQRIOwgYf8BKzKEvzycVEMdp5QRtimaoDwgeXuWFXamoQ2xTaUXTdcfvqESQgghNsAJlRBCCLEBl5fNFJVPvqb8ofIT3w8//KDZ2ZlF8oJcHJ2dGSQn8nNlRob+cUbW6dq1q6WN5cuX57lvt4LC+uQrE8Obrq+zz8IXLujf7vLzmdH0qVm2s2LFCs1u0aJFnvd75swZzZZJm019kddG3ott2rSxtPH999/n2g+ThFGmjP79TqaOK1eunGbL8w5Y80bK4y0o3LzF88okbsnPlfKUpAo7LR8dMaVsvaibMjGY/ELqSmI2OXr3GspYvsYGClsk1ylvaCPZsE1Dfr4FrJ3zF7ZUPUypR8X3anWcn3wJIYSQEgsnVEIIIcQGOKESQgghNsAJlRBCCLGBYpdtxpU1hg0b6iu7/vzzT80+ffq0pY6vr75QTa7JMzlXyDV30llErlusXbu2pY2i4pRUWDhb6wgAaWm6N4h0ZJLONK44B8lr5Uod6fxz8uRJzd61a5eljhyvtWrV0uwTJ05Y6uzdq7uUyLWqcnybxpV0SpKOXSaHItmO7GtcXJxmmxy5ikxocPmYCDGUkY8B6UDkKWxXnJLkK8pFYymNFOE/VVWcwiqGOtKR6Wdhm56SMcLeKZyQhOka0oPK5FAkfeZaC/tXYUunJQBIyEunCg++oRJCCCE2wAmVEEIIsQFOqIQQQogNFDsN1RWkDic1UxlfFbAGFJDxY6WmCgCenrrI4izmbJUqJjXk742MBysDagDW8ywDDGRm6oE+pcYKWHVYWccV5PU9evSoZleoUMFSR2qXUtu84447LHXkOJExoiVS6zQh9X4ZuxoAmjdvrtlffPGFZsvzbtK7Cyt2r4WrwjZFJJDdjxS2DKJrCtIgXStMgXedUFlopo3F71aV3Sr/PizsxYY6Mr6vlCqlhuqSpipvo5qGMr2FPUnYMrCDKThEfoJqFAJ8QyWEEEJsgBMqIYQQYgOcUAkhhBAbKBEaalhYWK6/Sw3KtFZOaqhSM5UaFGBdYyjblXpg+fKmcNN/b+Q5M51nuU1qpPJamdZYSh1Warem3J4SqYdWrFhRs035UBs1aqTZMTH6akCZyAGwaplSI5XnrG7duuYO50LTpk0t27Zu3arZch317bffrtmmdbdFBrkQ0ySZ/ylsmf9CBs83rbGUdeR+rMMZ1YSdLuwdwpbrRwFgnbA/FLbUVAHgS2GfkB0R7guXTbNDkmFbTkypeaWg21zYMmfIGkMbRSM3i1P4hkoIIYTYACdUQgghxAY4oRJCCCE2UCI01Pr16+f6u9RQZeJkwLmmZkp8LePBSi1PrluU6/iIFZO+LeMsS01VxpSVsX0B4Nw5fVWdK5qp1DJl8uzERD3rsWldZnx8fK77NenqMpZvYKCeCVqeI1MsX0lwcLBm79+/32md7t27a/aHH+pKXWpqqtM2igym4LYyvq9cRi4vpzV0MXBK2AbNVJIq7KrClqvkrR4BQANhy9EcDyv3CHuBvowaV+XxmqR5qaFWEvYmQx2pfz4n7JFO9gEARSREtDP4hkoIIYTYACdUQgghxAY4oRJCCCE2wAmVEEIIsYES4ZQkEy7LwOcyYLePj1yNbV34LwPoyyTlgNU5RDopyTZNAQf+7shzZgpsHxQUpNkywIIMsCHbvNE2Z7/LwPXSyUwG7jAlP5CJGapW1V1QDhw4YKkj93P48GHNDgnRvWmcHRtgHYumZA8y6MSRI0c0u0aNGpotkwMAViesQkO+KpgC28tcBnLoSUcm0+uHs1cSw6W5KBxs5JWQTydTcPzqwj4kbJmAHLCegpbC/l5EmFCmIPXyeHyFbfUHBAYJe6uwZUd+MbQho10UUfiGSgghhNgAJ1RCCCHEBjihEkIIITZQIjRUGehbampSMzUFYJeL57dv367ZMsg5YF3oL7Uvud8//pApfokMmCE1RgBITtazQzdurKdgltfBpFVL3VXq7KbAHXfeeadmSy1eBuqQeikAlC2rC1GbNukr301BGaRmLMeRHKs///yzpQ0ZvEQGtmjbtq2ljgxUIf0GZAANk3YryxQaUphsZChzWNgySHuCsE3B8aXuKhOMG56wMl+8PGOpwramgrcG1JfxFUxSpgzlIUerksciOwJYs5LLIAyDDXWkm4AUhWVACZNLgNxvEYVvqIQQQogNcEIlhBBCbIATKiGEEGIDJUJDrVOnjmbLYPhSUzUFMZf6UYsWLTTblaTk0pa6nWkt698dud735MmTljJy3WVERIRmy2D4KSkpljakLinXYaanS1UKiIqK0mx5PTMydMFMapuAVVcdNWqUZm/ZssVSJy0tTbNlYHupXcbFxVnauHjxombLNaSmdagbNmzQ7Hr16mn28ePHNdukGUs/gkJD5hyw5n63Co+NhC3FzThDG1LglOKl9RRZ5MA0YYcJ25TGQXqBrBZ2b0Md+bCXcf0tydENfZdJyHGnsK3LyIH3hN1e2L8LO87QhvX2LJLwDZUQQgixAU6ohBBCiA1wQiWEEEJsgBMqIYQQYgMlwilJOoPIwA2uOCV9+eWXed6vdOy4ds3kPvAXpsDvf3dksATp+ANYAygsX75cs2WQBumQY9qPLCODxwNApUq610pqaqpmy3FkGldr1qyxbMuJKVGDdIAzOf/kRJ4fE9KRae3atZYyt99+u2Y/8MADmv3RRx9ptryvALPzXqEgnVhMt16EsF8VthxG52BFxhCRZaxDAmdF8IfK4jRKZ6HKht1KRyaJqauyjvTJOiMrmCLsyyj88pVslqFOF2E/I+x/Cts6rIAiMqycwTdUQgghxAY4oRJCCCE2wAmVEEIIsYESoaGWL6+v4pYL7l3RdT799NNcfzctWJcBB86csagQGia97O+O1DZNyPMmgzTs36+H/Ta1adJVc2K6vlKblG1IzVwGmACA9evX57pfk64ufQJkQAWJKcC+5ODBg5rdsqXM6mwNkPLUU09ptgx2EhYmQxAAx44dc9qXAkEGIDAFXA8SdkVhbxK2NeeCWazMiQsBCWQTUhE3hcqQcf0l1tAm1mAQpsPRaGjYtlnYPwq7j6FOO2HXEvbDwpbZ0wFz0vEiCN9QCSGEEBvghEoIIYTYACdUQgghxAZKhIYqNTYZ6Ny0tlEiA4NLTEHMZQJqU8DxnDjTWP+OSH1b6qOAdZ2ps3WZzvRSV5HjSibPlkHrTX3fuXOnZkvN9PffZWRwoHnz5rnuRyKTlrtCQoLMnm0d47Vq6WKXHL9FRi91Bavca00GHi9s6XohdVmbSBW2lHtNXgan5CNNyPdnDbeAfHuyBMeXfOusgIG9hm3SPaWVsKWLwK/52G8RgW+ohBBCiA1wQiWEEEJsgBMqIYQQYgMlQkN1hlwfKGP9As4TI5uSOLdqpYsBMl6q5Nw5Z4vWiOk6nD+vi1dSh3QWQzm/yHZl7FqZUN6E1HOlzn7kyBFLnbvuukuzTetbc2IamxLpRxAfLwVD6/gNDdWDuW7bts3pfooMUv80LbqUizXlMnH5mLApnqx86EpbemLIvN8ArH0Tjx7Tg13eJVdM7ebEKrNbkSGwdxrKyMdilLBlGPViErfXBN9QCSGEEBvghEoIIYTYACdUQgghxAY4oRJCCCE2UCKdkmSwAOnUYXIEccaJEycs26RTSpFJrlyMkE46AQEBljLSKUk6y5iSg9uBdOSR19vX11ezTWNEEhkZqdmmJN3ynJjK5EQGnDAhHfFMQUjuuOMOzd66dWuubZqc8IrMPSD9uEyBHZKFLZ1lfHFLkP5E0ulIxmTI3dXx/6PnhschQzD5KDGMnL5NGZKjW5y7pA+hyX+uu7AXCVseoKljRWRYOYNvqIQQQogNcEIlhBBCbIATKiGEEGIDJVJDlXqR1Lp2796d5zZXrlxp2TZ+/HjNdmWhP9GRwRNMQTeklik1U2dBOezCmZa5b98+y7ayZctqttQ7f/xRZmgGBg4cqNnOdEk/P5PYlTumYzl1Sg+XXr58ec2WvghJSUmWNpwFNykwZNQC0xCR0rvUTF1IDm4H8krIbhjDwVQVtr+wDZrx1UTddvrwL2vY5iyivinGinRZiRa2vA6HDG0Uk0drMekmIYQQUrThhEoIIYTYACdUQgghxAZKpIYqtUyp6+QnMfJvv/1m2SaDtDsLYn7hgilCN8mJt7e3ZVtGhp4J+vjx47n+fquQuqPUcs+ePWupU7lyZc0OC9PFLdNYlInNZYJ1qRm7Mp7leTWtQ5X9l3Xk76b1r7LvhYaUcq3Lm62ZveUtLn+/RXgIW47mFOulAuoJu7qwT1urZAoNVSYul3feRVcek4HCNs0oJ4Utr4UMwm9yCQh2oS9FAL6hEkIIITbACZUQQgixAU6ohBBCiA1wQiWEEEJsoEQ4Jcmg5NIxQjqTnDwpVXLnmAIOSEyOHjmhU5JzpKMXYA0wIJ1jUlJSbklf5PWS11cGnEhPt0YCkE5IMsiIKRiIs+AIciz++eefuZYHgIsX9ZDr0lkKsPb/3Dk9pEC1atWc7vfMmTNO+1IoWH3drAEGpHNM3n0XXaOSbnqI/crg+AiVG2B1QpJOO4bjleFBpAulvPMuWzpiDUJhiTpR31oHcpjIeCBNhW3KMXHcsK0IwjdUQgghxAY4oRJCCCE2wAmVEEIIsYESoaHKoN7R0bo4IrWvmjVr5nkfcnG9CRnoXVJkFr0XYVzR5aS2lx+kVmu6vnJcycAdUv+sXbu2pY0DBw5odnh4uGabjlcGw5darr+/HgndpIdKfVfqsqaxKs+BswApUpcFnPsRFBhSMJT6KGDV5WTC8fwktZa3uAsxR+SVsLzlmJ7SkcKWmqpBh3T/Sbdl/ASpoaZWNOxXBoyQl9vkaiLPgawjD/i8oY1iMlPxDZUQQgixAU6ohBBCiA1wQiWEEEJsoJh8mc6dbdu2aXadOnU0WwYTb9iw4S3phwyWLimoRNjFmUuXZMhu54m984PUKU369q5duzS7ZcuWmi01xLp161ra+PXXXzW7YkVdmIqPj7fUCQoK0myp5Ur9U2qqgNWPQJ5X035lO/IcSY1VHgsAnD9vEsCKAGmGbVLvy49mKpFD1RTUXWQQlxqqRYU2PTZkcPw6wt5prSKXf8qrZ5kMZBJzAKgmbLm0foehjlxHK8+R1FjlsQBWfbuIwjdUQgghxAY4oRJCCCE2wAmVEEIIsYESoaFu2rRJswcOHKjZV65c0ezGjRvbsl+pZTlbg3crtMCShklDvRU0b95csxMTEy1l5LiS2rtcH1upkgjSCqs2W7ZsWc02JemWsall7Gm5HlRqrCYSEkwLMXXk+JSa6dGjRzXbFIe4yI5xk4Z6K3hI2IcMZUQe+vLiZ+mJ4WEIVZ0oE3tLvdMqq0OuvpdyqFS/40yxjGUjew1lJFKrlsuXtwnbNCvlvsS/yMA3VEIIIcQGOKESQgghNsAJlRBCCLEBTqiEEEKIDZQIp6TNmzdrtnRskQmZk5PtWSWclqZ7OjhLDG1y4iCFg3RUMyV/3759u2bLoPwyiIHp+kunIxkMwuSUJMtI5zf5u0y4DgDHj+uR350lbgCs50COV+lwZHLCk0H5/3bIIAymfOsBuiniPFhsY6gM6XQkCxmckmTXZIJx0S2UNvi6XZUORVesZSzI4SmHjRyapgAbMnJ/EYVPeEIIIcQGOKESQgghNsAJlRBCCLGBEiF4yEDfUtuSQetNulW1avoyZ7mI3YTU4ZzpR0Um+TKxJCowBWX47bffNFtq5lKXlAnIASAkJESz5RgwjcW8EhYWZtkmA+ybAlc4w1mQBpMu6+cn01b/zUgXtjVfAvCLbsqzKDVUa9oGWCPdRwnboKHKkCnybUpKl1crGPYrhdYDhjLOcCbnm3TZsoZtRRC+oRJCCCE2wAmVEEIIsQFOqIQQQogNlAgNVSI1U6lbmRKB50dDlbpUZGSkZv/555+59oMUHjLwu4eHdaGbXIcp9U653tm0llVqqHFxcZpt0ilTU1Nz7UdSki6gyYD7AFCuXDnNzsjQszjLNbV2Iffzt0Ou0zQtTRePAaldSiW+sqGJfVISPylsGZAe1vwAsmtSu7VkIAesWqYcRlLbtYvUW9SuzfANlRBCCLEBTqiEEEKIDXBCJYQQQmyAEyohhBBiA8XOKckUgFwpXdZfsmSJZj/22GNO22jVqpVmf/PNN077YnJCyW0/piDmpHDw9vbWbFNAgr1792q2TMJQr149zZaOToDVKWn//v1O66Sn69EBZDB8WefAAevqehl0RDpQ3Srkfv92yMAHIYYyKbp5RPxcQ9jGh/S3wq4nbINvmHzqydgPFrc82THA6rkkA1ncKgpm+N40fEMlhBBCbIATKiGEEGIDnFAJIYQQGyiRGuqyZcs0u1+/fppt0nl69uyp2ZMnT3baFxkMX/ZD2jIgOyk85LUwJX/399dVplWrVml2kyZNcm0TAOrW1aOjr1ixQrNNAeblNjmO5Pg9ffq0pQ25jWOvgJDapSmwQ6iooueCt8SGN771bBB2T2EbAjvIIPuya1JDLZVqbeOa6GuBaajFBL6hEkIIITbACZUQQgixAU6ohBBCiA0UOw3VpHXJAONS65LrP03B8Z0lUzaxe/duzW7QoIFmy/WDFSqYMvaSwkAGcY+IiLCUkUHof/rpJ82WiexNY9NZm6dOnbKUOXPmjGYHBgZqtkyyIJMyAMCvv/6q2XI9rEzcQGwiVdhyfSgAyLwbQjS9IgLfW59WsD65DwnbsIY0RR9GKC0C20s1/5ppxzKSv4zcf8JQ528E31AJIYQQG+CESgghhNgAJ1RCCCHEBoqdhmpat+eM48f1xVMtWrSwlPH11YNUtmzZUrNlHFfAqmXJBNRlyuipgmXSZ1J0iI+Pt2yTsZrlelCZhL5p06aWNsLCwjS7YkU9a7Npv84Sm8u4w6GhYmEjrH4CUs8ntwi5uHOXoYwM6S10Sct6UNN+ZCLv7U764QLn5QbT65YMeX1r8tQXW/iGSgghhNgAJ1RCCCHEBjihEkIIITbACZUQQgixgWLnlCQdQ1zh/fff12yZ5BkAPvvsM802OSFJYmNjNVsuwJeJor///nunbZKCQQZYkA5kAHDunO5xIRMzrFu3TrNNwRLeeOMNzZbB8WUAfsA6rtq2bavZaWlpmr1+/XpLG7Iv0pnPlSQTJB8cFLYpOIKM5SG8jnaIn2XOcgBAkLBXC9vk/ygu725DEQ2TH9sfwpZB+E2vaHmPmVNs4RsqIYQQYgOcUAkhhBAb4IRKCCGE2ICbonBCCCGE3DR8QyWEEEJsgBMqIYQQYgOcUAkhhBAb4IRKCCGE2AAnVEIIIcQGOKESQgghNsAJlRBCCLEBTqiEEEKIDfxtJlQ3NzdMnjzZYc+fPx9ubm6Ii4srtD4RQgqGAQMGIDIyUtuWnp6OIUOGIDw8HG5ubhg7dmyh9K0oExcXBzc3N8yYMaOwu1IsKLITavaEl/3Py8sLNWvWxMiRI3HqlEzXQEjBcOTIEQwbNgzVqlWDl5cXAgICcNddd2HWrFm4eNGUnuPm+eSTTzBz5sxb0nZJ4uTJk5g8eTJ27tzpUvmpU6di/vz5GD58OGJjY9G3b98873Pfvn2477774Ofnh5CQEPTt2xcpKSlO6505cwbTp09HmzZtEBoaiqCgILRo0QILFy60lN22bRtGjhyJevXqwdfXF1WrVkXv3r1x8KBMbVOy2Lp1K5544gk0adIEZcqUMWZIcpXU1FSUL18ebm5uWLx4seX3X3/9Fffddx8CAgLg7++PDh06uDyOclLk07e98MILiIqKwqVLl/DDDz9gzpw5WLlyJXbv3g0fH5/C7h75G7FixQo89NBD8PT0RL9+/VC/fn1kZmbihx9+wNNPP409e/bgvffes32/n3zyCXbv3s03KCecPHkSU6ZMQWRkJBo1aqT99v777yMrS88jtn79erRo0QKTJk3K1/5OnDiBNm3aIDAwEFOnTkV6ejpmzJiBXbt2YevWrfDw8Lhh3S1btuDf//43OnXqhGeffRalS5fGF198gUceeQR79+7FlClTHGWnTZuGH3/8EQ899BBuu+02JCUl4e2330bjxo3x008/oX79+vnqf1Fn5cqV+OCDD3DbbbehWrVqN/UHxPPPP4+MjAzjb9u3b0erVq1QpUoVTJo0CVlZWZg9ezZiYmKwdetW1KpVy/UdqSLKvHnzFAC1bds2bfs///lPBUB98skneWoPgJo0aZKl/WPHjtnQW/tJT08v7C6QHBw9elT5+fmp2rVrq5MnT1p+P3TokJo5c+Yt2Xfnzp1VRETELWm7JHDlyhV1+fJltW3bNgVAzZs3z6V6UVFRqnPnzvne7/Dhw5W3t7eKj493bFu3bp0CoObOnZtr3aNHj6q4uDhtW1ZWlrr77ruVp6endv//+OOP6vLly1rZgwcPKk9PT9WnT598998Vjh07pgCo6dOn39L9mEhKSlIZGRlKKaVGjBih8jtd7dq1S5UuXVq98MILCoBatGiR9nunTp1UcHCwOn36tGPbyZMnlZ+fn3rwwQfztK8i+8n3Rtx9990AgGPHjqFt27aW5MuAWS9xldmzZ6NevXrw9PRExYoVMWLECKSmpjp+HzlyJPz8/Ix/7Tz66KMIDw/XkjmvWrUKrVu3hq+vL/z9/dG5c2fs2bPH0l8/Pz8cOXIEnTp1gr+/P/r06ZOv/pNbw6uvvor09HT897//RYUKFSy/V69eHWPGjAEAXL16FS+++CKio6Ph6emJyMhIPPPMM7h8+bJWZ9myZejcuTMqVqwIT09PREdH48UXX9TGT9u2bbFixQrEx8c75I/8ju3CJCEhAYMHD3Yca1RUFIYPH47MzExHmdTUVIwdOxZVqlSBp6cnqlevjmnTpmlvljk1vZkzZzrO8ezZs9G0aVMAwMCBAx3nav78+QD0Z8LGjRvh5uaGY8eOYcWKFY6ycXFxOHfuHPbv329JLm/iiy++QJcuXVC1alXHtvbt26NmzZr4/PPPc60bFRWFiIgIbZubmxu6d++Oy5cv4+jRo47tLVu2tLzt1qhRA/Xq1cO+ffuc9vNGJCcnY/DgwQgLC4OXlxcaNmyIBQsW3LD8G2+8gYiICHh7eyMmJga7d+spypOSkjBw4EBUrlwZnp6eqFChArp166b5qeTl/IaFhcHb2zvfx5fNmDFj0KNHD7Ru3dr4+/fff4/27dujbNmyjm0VKlRATEwMli9fjvT0dJf3VeQ/+UqOHDkCANrB28XkyZMxZcoUtG/fHsOHD8eBAwcwZ84cbNu2DT/++CPKlCmDhx9+GO+8847j8182GRkZ+PrrrzFgwACUKlUKABAbG4v+/fujY8eOmDZtGjIyMjBnzhy0atUKO3bs0B6MV69eRceOHdGqVSvMmDGDn7OLGF9//TWqVauGli1bOi07ZMgQLFiwAL169cK4cePw888/45VXXsG+ffuwZMkSR7n58+fDz88P//znP+Hn54f169fj+eefx/nz5zF9+nQAwL///W+cO3cOJ06cwBtvvAEA8PPzuzUHeYs4efIkmjVrhtTUVAwdOhS1a9dGQkICFi9ejIyMDHh4eCAjIwMxMTFISEjAsGHDULVqVWzevBkTJ05EYmKiRUOeN28eLl26hKFDh8LT0xM9evRAWloann/+eQwdOtTx8DRdrzp16iA2NhZPPvkkKleujHHjxgEAQkNDsWjRIgwcOBDz5s3DgAEDbnhMCQkJSE5Oxh133GH5rVmzZli5cmW+zlVSUhIAoFy5crmWU0rh1KlTqFevXr72c/HiRbRt2xaHDx/GyJEjERUVhUWLFmHAgAFITU11/HGYzYcffoi0tDSMGDECly5dwqxZs3D33Xdj165dCAsLAwD07NkTe/bswahRoxAZGYnk5GSsW7cOx48fdzzrlixZ4tL5tYtFixZh8+bN2Ldv3w0dUC9fvmycuH18fJCZmYndu3ejRYsWru0wX+/QBUD2J9lvvvlGpaSkqD/++EN99tlnqmzZssrb21udOHFCxcTEqJiYGEvd/v37Wz6Rwckn3+TkZOXh4aE6dOigrl275ij39ttvKwDqf//7n1Lq+meZSpUqqZ49e2rtf/755wqA2rRpk1JKqbS0NBUUFKQef/xxrVxSUpIKDAzUtvfv318BUBMmTMjraSIFwLlz5xQA1a1bN6dld+7cqQCoIUOGaNufeuopBUCtX7/esS37c1ZOhg0bpnx8fNSlS5cc24r7J99+/fopd3d3i3yj1PX7SSmlXnzxReXr66sOHjyo/T5hwgRVqlQpdfz4caXUX58gAwICVHJyslY2t0++pmdCRESE5ZNv9nPB2Wfj7H19+OGHlt+efvppBUC7hq5w5swZVb58edW6dWunZWNjYxUA9d///jdP+8hm5syZCoD66KOPHNsyMzPVnXfeqfz8/NT58+eVUn+d7+xnbjY///yzAqCefPJJpZRSZ8+edenTsKvnV5KfT74ZGRmqatWqauLEiUoppTZs2GD85NugQQNVs2ZNdfXqVce2y5cvq6pVqyoAavHixS7vs8h/8m3fvj1CQ0NRpUoVPPLII/Dz88OSJUtQqVIlW/fzzTffIDMzE2PHjoW7+1+n5fHHH0dAQABWrFgB4PpnmYceeggrV67UPgUsXLgQlSpVQqtWrQAA69atQ2pqKh599FGcPn3a8a9UqVJo3rw5NmzYYOnD8OHDbT0mYg/nz58HAPj7+zstm/1m8s9//lPbnv0WlD2OAGh/FaelpeH06dNo3bo1MjIysH///pvud1EgKysLS5cuRdeuXY1vc9mem4sWLULr1q0RHBys3S/t27fHtWvXsGnTJq1ez549ERoaant/BwwYAKWU07enbI9uT09Py29eXl5aGVfIyspCnz59kJqairfeeivXsvv378eIESNw5513on///i7vIycrV65EeHg4Hn30Uce2MmXKYPTo0UhPT8d3332nle/evbv2zG3WrBmaN2/uGO/e3t7w8PDAxo0bcfbs2Rvu19Xzawf/+c9/cOXKFTzzzDO5lnviiSdw8OBBDB48GHv37sXu3bvRr18/JCYmAsjbdSzyn3zfeecd1KxZE6VLl0ZYWBhq1aqlTXh2ER8fDwAWjy4PDw9Uq1bN8TsAPPzww5g5cya++uorPPbYY0hPT8fKlSsxbNgwxwPi0KFDAP7SfCUBAQGaXbp0aVSuXNm24yH2kX2t0tLSnJaNj4+Hu7s7qlevrm0PDw9HUFCQNo727NmDZ599FuvXr3dM2tm4ojEVB1JSUnD+/HmnnqiHDh3C77//fsNJMjk5WbOjoqJs62N+yP5jSOriAHDp0iWtjCuMGjUKq1evxocffoiGDRvesFxSUhI6d+6MwMBALF682CEv5ZX4+HjUqFHD8iytU6eO4/ec1KhRw9JGTq3Y09MT06ZNw7hx4xAWFoYWLVqgS5cu6NevH8LDw/PVx5shLi4O06dPxzvvvONUIvm///s//PHHH5g+fbpDQ77jjjswfvx4vPzyy3mSWIr8hNqsWTPjX7bA9b9ulVKW7TmdOm4FLVq0QGRkJD7//HM89thj+Prrr3Hx4kU8/PDDjjLZjhSxsbHGAVW6tH7qPT09b8kfCuTmCQgIQMWKFS1OGLnhbM1camoqYmJiEBAQgBdeeAHR0dHw8vLC9u3b8a9//cuyxKOkk5WVhXvvvRfjx483/l6zZk3NtsNZ5WbIdkzLfovJSWJiIkJCQoxvryamTJmC2bNn4z//+U+ua2HPnTuH+++/H6mpqfj+++9RsWLF/HX+FjF27Fh07doVS5cuxZo1a/Dcc8/hlVdewfr163H77bcXaF+ef/55VKpUCW3btnVop9n6dEpKCuLi4lC1alXHM/fll1/GU089hT179iAwMBANGjRwvNnKsZcbRX5CzY3g4GDNGy4b+deVK2R73B04cADVqlVzbM/MzMSxY8fQvn17rXzv3r0xa9YsnD9/HgsXLkRkZKQmXEdHRwMAypcvb6lLih9dunTBe++9hy1btuDOO++8YbmIiAhkZWXh0KFDjr/2AeDUqVNITU11jLONGzfizJkz+PLLL9GmTRtHuWPHjlnavJkF7YVNaGgoAgICnP4xEh0djfT09Ju6VwryPFWqVAmhoaH45ZdfLL9t3brVsg72RrzzzjuYPHkyxo4di3/96183LHfp0iV07doVBw8exDfffIO6devmt+sAro/T33//HVlZWdof8tlSg/RAzv7ilpODBw9aPM6jo6Mxbtw4jBs3DocOHUKjRo3w2muv4aOPPrqp/uaV48eP4/Dhw9qzPJsnnngCAHD27FkEBQU5tgcHBzskO+C6DFi5cmXUrl3b5f0W61ei6Oho7N+/X4tM8ttvv+HHH3/Mc1vt27eHh4cH3nzzTe2t97///S/OnTuHzp07a+UffvhhXL58GQsWLMDq1avRu3dv7feOHTsiICAAU6dOxZUrVyz7cyWaCik6jB8/Hr6+vhgyZIgxUteRI0cwa9YsdOrUCQAsXqmvv/46ADjGUfanupxjLTMzE7Nnz7a07evrW2w/Abu7u6N79+74+uuvjZNP9vH37t0bW7ZswZo1ayxlUlNTcfXqVaf78vX1dZTPL3lZ1tGzZ08sX74cf/zxh2Pbt99+i4MHD2orAK5cuYL9+/db3mYXLlyI0aNHo0+fPo7xYeLatWt4+OGHsWXLFixatCjXP+hcpVOnTkhKStIiM129ehVvvfUW/Pz8EBMTo5VfunQpEhISHPbWrVvx888/4/777wdwfZVD9qfubKKjo+Hv7699Fs/L+c0L+/fvx/Hjxx32Sy+9hCVLlmj/XnzxRQDX7+UlS5Y4xouJhQsXYtu2bRafGqfkyW2qALlRYIec7N27V7m7u6vbb79dvf322+r5559X5cuXVw0aNMizl69SSk2aNEkBUB06dFBvv/22GjVqlCpVqpRq2rSpyszMtOy/evXqyt/fXwFQv/76q+X3jz/+WLm7u6v69eurl156Sc2dO1f9+9//Vo0aNVIjRoxwlOvfv7/y9fV1/eSQQmHZsmXKy8tLBQcHqzFjxqj3339fvfPOO6pPnz7Kw8NDDR06VCn1l9d279691TvvvOOwu3fv7mjr9OnTKjg4WEVERKjXXntNvf766+r2229XDRs2VADUhg0bHGVfffVVh0flJ598or766quCPvSb4sSJEyo8PFz5+PiosWPHqrlz56rJkyerevXqqbNnzyqllLpw4YJq3LixKl26tBoyZIiaM2eOmjFjhuPeSElJUUrlHmggMzNTBQUFqVq1aqkPPvhAffrpp+ro0aNKKfu9fJVS6vjx46ps2bIqOjpavfnmm2rq1KkqODhYNWjQQPPwze5z//79Hdt+/vln5eHhoUJDQ9X//vc/FRsbq/07cuSIo+yYMWMUANW1a1dLudjY2Hz1PyMjQ9WpU0d5eHiocePGqbfeekvFxMQoAFqAkuy+N2jQQEVGRqpp06apF154QYWEhKiyZcs6gpzs2LFDhYSEqP/7v/9Tb775ppo9e7a69957LV6yeTm/cXFx6sUXX1Qvvviiat68uQLgsKV3NQDjio+c3MjL97vvvlP33HOPmjZtmvrggw/UkCFDVKlSpdR9992nrly54rSfWj/yVLoAcWVCVUqpjz76SFWrVk15eHioRo0aqTVr1uRr2Uw2b7/9tqpdu7YqU6aMCgsLU8OHD3fc9JJ///vfCoCqXr36Dfu3YcMG1bFjRxUYGKi8vLxUdHS0GjBggPrll18cZTihFh8OHjyoHn/8cRUZGak8PDyUv7+/uuuuu9Rbb73leIheuXJFTZkyRUVFRakyZcqoKlWqqIkTJ1qWUfz444+qRYsWytvbW1WsWFGNHz9erVmzxjKhpqenq8cee0wFBQUpAMVyCU18fLzq16+fCg0NVZ6enqpatWpqxIgRWgSgtLQ0NXHiRFW9enXl4eGhypUrp1q2bKlmzJjh+IPWWeSeZcuWqbp166rSpUtrD+5bMaEqpdTu3btVhw4dlI+PjwoKClJ9+vRRSUlJWhnThJq9nxv9y7n/7InuRv9y8tZbbykAavXq1U77furUKTVw4EBVrlw55eHhoRo0aGA57pzn+7XXXlNVqlRRnp6eqnXr1uq3335zlDt9+rQaMWKEql27tvL19VWBgYGqefPm6vPPP9fay8v5zZ4ATf/k5HkzE+rhw4dVhw4dVLly5ZSnp6eqXbu2euWVVyzRqVzB7f93hhBCSDGnd+/eiIuLw9atWwu7K39LirVTEiGEkOsopbBx48YCdwAif8E3VEIIIcQGirWXLyGEEFJU4IRKCCGE2AAnVEIIIcQGOKESQgghNsAJlRBCCLEBl5fNFKd4ojLNVrNmzTT722+/tWU/jRs31myZ2f3gwYO27KcgKCxn7+I0rmQIsi5dumj22rVrLXVkeDMZMF2OGQCWOK05Q9sB0ELAFTVk0gdT2M2CoDiNq0bC3ilzgZiSHMmENJHC3maoc0Ts97hu7zRUsQX52pafvA8i37pKKZqLU/iGSgghhNgAJ1RCCCHEBop8pCQvLy/NHjt2rKVMzqzzwPU0PDmRSYszMjIsbYSEhOS5bzK7gszsLvOyfvfdd5Y2PvjgA81evXp1nvtBbh6ZLQgA+vTpo9nZOTCzuVGe3pzk59Oj/PwuU7rJT8ArV660tBEbG6vZprydt4IiEyfGjs+M+UAmC3vaUEZ+wRVfYrHzT7GhnqGRz/PSq/9PpG6GiZ/XC/s2QxNxwnZ+B8Cec+882VCRgG+ohBBCiA1wQiWEEEJsgBMqIYQQYgOcUAkhhBAbcDnbTEGt65o2bZpmDx06VLPlGlPA6gwkbbkWztvb29KGh4eHZss1h5mZmZY60rlJ1pFrDk37LVWqlGZv2bJFs9u0aWOpcyso6etQe/ToodlPP627i4SFSRcN65pK6WRWtWpVzZbX3xVM5/38+fOafeLECc3+80/da8V0T8hxtWrVKs2eMGFCnvqZXwptXLmLcXWLunFR2HKF+y5Dnc3CPiHsHU+IDcdg5aSwLwk7FFbO6mafPbr9pCh+2tCEpKOwC2r1b5FxfhPwDZUQQgixAU6ohBBCiA1wQiWEEEJsoFA1VKmPAsDcuXM1OykpSbOljgVYv6fLvpYpU8ZpG87aNJ0mqbE5a+PqVevqZNmXypUra7bUvgCga9euue43P5QkDbVt27aWbW+88YZmy0AepmAfPj4+ml22bNlcfzedQ2fHZ4p1K+P7njlzJtf9pqSkWNqQfQkKCtLsL7/80lLnqaeeyrWv+aEkjauPDdvqC/t+YVcy1Nkp7CtSiCwvbKtEbhUrywj7DKyIUNN3ntLt3aJ4J0MTUjNuJuyahjrWkCk3DzVUQgghpATDCZUQQgixAU6ohBBCiA0UqoZ66tQpyzYZDF/qSaa1fuHh4bnu5+xZfQHW5cuXLWWkvinzWMp+Adb1gLJvUh+V61IB63mV6139/PwsdaKjozX79GlXVozlTknSukzB4itV0tUseS3kOmQAiIqKynU/rujs+Tm+I0f0cOlSMy1fXhfZ5LprADh+XE92KXVWqakCQNOmTTXbpPnnlZI0ro4atn3hxLaq29Zg+BbuE3YVQ5mywv7N+U5qivTMlmzNo4RtTe+Lxw/odlvxe6q1CpY5bzbPUEMlhBBCSjCcUAkhhBAb4IRKCCGE2EChJhgPDAy0bJP6ptQlTXrp7NmzNfu9997T7F9//VWz5dpWwLr+My1NTwMsNSnAqmVJ/VMmpE5ISLC0IZOUBwQEaLYp/m+1anoaYzs01JJERESEZZvUXOR5lXF5AWDevHmaPWvWLM3esWOH075ILU/248ABIUrBqt1mZekZmuX6Zxn7F7COK6khyzYBoGLFipptGvM5keu7AdfWeBdXvjFsk8nCZdhdq5cIrAnD9wr7R2Fbl+sD/xG2WBDqbhFIgYNy0azUYd8y7EcQJ+z5wn7AUCfasC1XrGG1gXN5baRw4BsqIYQQYgOcUAkhhBAb4IRKCCGE2AAnVEIIIcQGCtUpyRToQDpTuLJA+5lnntHsc+d0BVsmWzY5+mzcuFGz27Vr53S/e/fq3gR16tTRbOlgNHr0aEsbL730kmbLBfimQBatWrXS7K1btzrt698JGcQesAb3cCVowfDhwzVbOty4Mja3bdum2c2ayXDiVnbv1sOU16une7HI/cp+AsC0adM0WzrEmQKGxMTEaHZsbGyu/TQF9jfd0yWFnwzb5JNE5vU2OSVFiMTe8bKSjAZhcDDC7cIWjwCryxlQRkS/l1evubDLGdqQ7o8VhH3IUEc6bjnFdNJyj7FSZOAbKiGEEGIDnFAJIYQQG+CESgghhNhAgQbHlwHITUHqpdYl92sK6v3VV19pdrdu3TTblUOU+3nhhRc027R4ft26dZotk1YnJydrtgz8AAAHD+oCiUwm7e9vzS68cOFCze7Xr5+lTF4pzkHMZaCDxMRESxl5LaSuLgMfAMCPP+or7Hv16qXZMviHCTnmn3jiCc2WCRYAYMuWLZotg47Ex8drtjwWwNp3qXea/AhkMvt//OMfmi31UZNeKu+T4jyu5NH1MJSRMQjShf27oc42GelAaqgmsVYixMvuYsjrT6LrbBe2jKdfW9j7DG30Ffb3wrZ6LwC/ykeYvG1kHBaTXrpRNxkcnxBCCCnBcEIlhBBCbIATKiGEEGIDBboOVQbfNiGDdpu0HolJ/8qNhx56yGkZuQbPlMRZale//aarEjI4vkyWnl9q1KhhSzslBakxmvQVqSFKbdO0LlUmIXAW+H3QoEGWbTI5+Ndff63ZpnEl+3L48GHNluPdpO/Lvsr13ab7ytm4cpa4Arg1ib0Li8vi8NwNizt9hC3PSJCpYakZWiV/nTaGbV66uU60YboKcrfyLtknh4TVxQXB4hzIEXMGBpzlS4gXtnWJtFXQLqLwDZUQQgixAU6ohBBCiA1wQiWEEEJsgBMqIYQQYgMF6pQUGipXMDunTJkymm0KyC2dNEzOEjn57rvvnO539erVmi0dVABrEIZOnTpp9oYNGzRbOi0BVkcl2XeTs0x4eLihx38fpONLlSpVNNvLS3hswOpAJp2STEE3ZHIDU7s5MY0r6TC0ZMkSzTaNK5ncYdSoUZq9fPlyzd65c6elDdPx5MR0H0knOmeY9lFUF9y7hHwaiktzyBCkXgYykEdvfMBuFrZ0OpIRFUxOPWKoPSN+Nu03Wdh7quu2t+77ZvQDOi5seUeUgQEPYWeYCuXgD8M2g4NUUYRvqIQQQogNcEIlhBBCbIATKiGEEGIDBaqhuhKAwdnC8IwM6wd4qSnK4BCyzVq1alna+M9//qPZ0dEygrWVfft0saN2bT28dESEvpRaBkYHgDvvvFOzZbB0k06V10AWJQ2ph0ZGRmq2KWi73Ca1PpNWHRwcnGs/AgMDNbt8+fKWMjNmzNDsu+++W7NNer9Mdi8DLtx2222aPWTIEEsb//d//6fZUu83jSsZIMMZzgJdFDuChC0i3/9h0FDlGZNx3U1yYHU9xgYOS41Rz/MOP4PLh0xT/29ZQEacANBHPjov6OZFkWH84klrG+7igKRmalTQjcJqLljjlBQb+IZKCCGE2AAnVEIIIcQGOKESQgghNlDk1qFK/VPqZTKZNGBdy/nyyy9rtlzL2qFDB0sbDRs21Oz69etrtinRt9RMpQ4rE4E3atTI0oZEHq88H4D1eP7uhIXpYpdcYwpYg8HLoPWmcSV1xkmTJmm21F3bt29vaUNq8fXq1dPssmWtKZmlZjplyhTNlont5dgFrPquXHdq0j/tCGxfrIPjy64LKT7JUGWnsGX6iyOGOhadUWqVQqtNN5zS86KRTuL3E4a1ngnC9hAB9TO7iQIyaD2Ab4UtV8QbJ5QU08Y8Yr2liyR8QyWEEEJsgBMqIYQQYgOcUAkhhBAbKFAN1ZVYoVIzlOv0TFqXjH36zDMysmXu5QHg1KlTml23bt1c2wCApCRdVZEasUzqbEKuh3RFQ5XIOiVufaATXElcL8+R1MRNsW1lQu0xY8bkug/TuEpJ0QUkqbub1sympqZqtrxv4uMN4pZAjis/Pz1rc1pamtM2JFKHNt2Lroz5IosUN0sZS2lIeVAs7TQ+YNPkY3C7k50Y+nFR3OJyFJni8IpQvbA8Wd510g8A58QBnRPLt62Rqa1Ib5S0emJDiKGS7HwRhW+ohBBCiA1wQiWEEEJsgBMqIYQQYgOcUAkhhBAbKHKBHSRycf2338qlxUCbNnqG3hMnTmi2dNIxLfyXDhauOG3IAAvSsUk6nJjalI4sMviDDGpuQgaHP3LEtJy85CADKkiHGxPyWsg2fvjhB0udFi1aaLYcV3JsyoTkpv0mJ+tpnk0BQ+T4lGNA7sfkhCYd5mrWrKnZpiQTElknLi5Os50lMS92nBb2IedV0kVcDiVu1wvlrHUsARWE05GvuJwXrDkXkCTaaCF+P2CtYkkGftVXbKgq7AaGRmSCgJ26KbplJC1QbEgVtimjQDF59Ssm3SSEEEKKNpxQCSGEEBvghEoIIYTYQIFqqEFBQU7LSD1M6lYLFiyw1OnUSQ8N7UwfMiV1lkG9TYvWJXLxvKzjTLcDgHnz5mm2KwH0JeXK6UJNSddQJb6+UgyyIq/F6dO6YPbll19a6shk4DLgQkiIvgLddH1lcAjZV1d0SGcB5728pDoGrF69WrOlHurK+HamzcvxD7gWiKTY4IIgWEpqpiIpOZpa63gv1+0KQjONryIqGDTFOsI+JmyT/CmD458VUSjOxIkCMuCCqeGdunnROhQBGevjDmH/KmzTEComScf5hkoIIYTYACdUQgghxAY4oRJCCCE2UKAaqtScTBqMTPwsg4ufPXvW6X5koHOpF5n2mx+cBbaXv5vWv/7888952gcAXLx4UbNNmvDfCbku03TOpHYp9UCT/inHjdQq5e9y7AJWjVReK9Ma0vR0PU21XO8sdVlTgP3vvvtOs0ePHq3ZpnMkt8lA97KvxTqZuAt46LcZMg1Py2ty2Mh88a2sdc4JDfWc1F3lutPasHBQzzEPucI/yFoFjYUtV7hnieM9a0oM7iz3gUn/rCnsXcJOFXYZFFv+3k9iQgghxCY4oRJCCCE2wAmVEEIIsQFOqIQQQogNFGpgB+lcAVgdP6SDRp06ckmzFelgIp06TOTHUUk6Zcg2pG0KbOFsvybHD+nYIgM7/N1wJWCIRCYqqFatmqWMvDYyaIG3t7dmm66VdFySY1M6/gBW5x9Zx5kzHGB1zHPWLxMVKlTI9Xe7nPuKKpajkwEXAGtEBXnaj1qryLeYLBkMwToULcg4/jLefA1DHZmGIUjYJ2UFk7+kDKDvbCeA1ZGporCThV2MY4PwDZUQQgixAU6ohBBCiA1wQiWEEEJsoEA1VGeBD0wcOKCnyo2OjnZaR7YrNUfTfvOzSN2ZliU14sBAqXRYE05LTPqY7Gt+ErcXZ+Txu6KRS/3z+PHjmh0REeF0P1KXdGVcyTqVK1fWbJOGGh8fr9kyYYQMFmEau9L3QOLKeC9f3pDZuiQjhpFFhrbeipak3ZdkEIZz1joWidBZ4HfDfqUMeainbu/7wlrnZWHvE/bvsoIpiIMMmC8TjpvqyHg2zl7jrLFOig18QyWEEEJsgBMqIYQQYgOcUAkhhBAbKFANVa59MwUGlxw8qH+kb9OmTZ73IzHpR87WlLrSjtTUTAHXJTKBurTLlpXRtq1Ija2kI8+zDA7vikYuNdQWLVo43a/cjyvJtCtW1NUuV+rI9Z8yqYRMdG5CJpWQdeQaWhOmYP8lGmd56g2nw3KHVxf2CVnAhf3K5fmGIXOiu9iQ+7JjAMDbwl4jbOmdYtFUAesa2ebCloHvAeuCXmv4gRID31AJIYQQG+CESgghhNgAJ1RCCCHEBgpUQ3WWsNiE1Jxq17Zm23W2PtAOTG06i/XqyvFVr66LLklJSZodHh5uqSPXIf7dtC6ph0qt2hTH1llMXdM6VGcJ4uW1knqpCdl3GVPYhBxHrmjmd955p2afPq1HfzXFLpYEBwdrdn78DIoVcr1ngLAzrFVkaverssx+w35k6G1dIkeVr3T7j4cMbchHi3g83WOoIu8K+UT7PVhsOGto5DFh7xW2aUgECVveaoeEnYliC99QCSGEEBvghEoIIYTYACdUQgghxAY4oRJCCCE2UKBOSdIRxBT4XSIDn5sCHWRk6J4ArrTrjPw4XEinJFf60a1bN82Oi4vT7Ntvv91p36TzSEnHWWB3kwOZvBYykb0MngBYkxvINsLCwjTblYAS0jYlTDh7VvcGkf2QfTfRvn17zZYB901JJuR+/P31bNHy+F0JXFKskEHc5aMmBRYuyA3SX8wUcEEGchDD5o9O4ndTLBA51EScjvWGKvcK25Ln25VH3k5huxL4PlHY0tlL3gKG81xc4BsqIYQQYgOcUAkhhBAb4IRKCCGE2ECBaqhygborWpAM5CAX1wNW7Ucu4pfapivJlZ1pX4BzndUVDTUyMlKzf/9dD0ndq1cvp/t1JcF2SUIGspDn2RSAXgZ7qFSpkmabEnJLbV5qs76+uhiWn0TvpsAdsl05nl253jLA/oEDBzTbFHREbpP9kMdvGt+uBDMpsjQQtoja4P+LtYq8En9u0e1oQ2AHecVlGz+JAPOXrI8Aq4YqtNplFWBhm9AypbRpCcCQathvvLBFcPzgZdYqZ+UBSvFWdsTkEmIKMlEE4RsqIYQQYgOcUAkhhBAb4IRKCCGE2ECBaqgyqLsrWqZcY2lKjCzbdZbE2ZUkz1KnNOmlcpsz3fXcuXOWNmQQc5lQ3ZW+uZIsuiTh7Dyb1qE6W8tpqnPhgr7KUOqDUpc9f/68pQ253lO2IccuYB2fzsarPDYAqFq1qmbv3atHMTcF5Xd2XktccHz5+JFPwyjdvAQrtYT9pwj0bl3ta83RXV7Yclnm2cXWNjbJIPVyGBkC+cv+y8D+l6T8XdPaBl4V9hDdbGGo8p3QdzMOiwLyvBfj5c18QyWEEEJsgBMqIYQQYgOcUAkhhBAb4IRKCCGE2ECBOiVJJ46LFy9ayvj56dGlX3/9dc2+5x5rLnrplJOfxeXOnJBccaCSC91lPwICZFRoYOPGjZq9fPlyzZ40aZKljmzXFOyiJCEDG8jzLK+VKUiDDAYxf/58zb7tttssdeR+ZKAHed5NiRuctRkUFOS0jLP7xnT99+zZo9lff/21ZnfqJCOwW52bLl3S3VhkMHxX7okig+lJJ29HGbRe5EuQce8BIFlu0HNdoNQH1jqVhF1f2NKfaJFhv5agC/L4DN5Bf/6s2+VFG+X/0G1T2J2DMiiDcIZqaqgjT+s3u3U7VXphFePXvGLcdUIIIaTowAmVEEIIsQFOqIQQQogNFKiGKnUsk9Yp9SIZCPz06dOWOjVq1NDsI0eOaLZp0b4z8hNAXy7Al5qTKYl1crKuwpiOTyLPW0REhNM6xQVT4Hdn109eB9O4krqqvDYJCQmWOlITlYEbpHb/559/WtowJRDPicmPQGqZqampudYxnbM//tAFsZQUPWuzKViEPI/VqskQBDrFKhB+OcM2KRLKWP97c/8ZAKoK+7iegwBVDHWkznhC2L8K2wcG5I5lInPRDwCW45UjM0zYhvj6OHZS7FbE9jCFmJHhTlINZTSs8W+KDXxDJYQQQmyAEyohhBBiA5xQCSGEEBsoUA118+bNmi0DwwPWtW8yWHzNmqaIzSUHqVuZgpjLwO7btm27pX0qSEzatdQIpc6+a5eekVkmbQesuuO+ffs0u02bNnnppstI/VeuqTUdr9Qmpe1KUHq5NrVKFV3NMwXyl0nXP/vsM6f7KTaYcrLLfPBJwu6hm6U/tzZhiUEvTut7ht2atuWZWGHLJdCmVyURdP6QOCeHpA5rQorC83XTpDPLHOv+wk5znquk2MA3VEIIIcQGOKESQgghNsAJlRBCCLGBAtVQt27dqtlyXSqQ92ThJQ2pF3p6yjTAVn3MFLu2uOAsTi9gHQNSl5TjqmfPnpY25LiSWr1Jy8xrAm1TG3Ktqjw+U4JxOxJ5y3blfkNDpYBojaMtdediFbtXaooyoCxgTcptKpMD6ypyw/JWsU7TGBDXlKk8N0xPaelKEizs44Y68vXJFc1UIuL9yq59b6gid5Mmb3Gpb5te84rJNMA3VEIIIcQGOKESQgghNsAJlRBCCLEBTqiEEEKIDRSoU5IMQL59+3ZLGekscuHCBaftSscWuRC+qDhTuLKI//Dhw5q9YsUKSx0ZcP2nn36yoXeFg8kJSSITe0tHLRmkQQZ6AIAzZ85o9rlzBROB21lQBhmk31QmP8ixduzYMc3+7rvvLHWCg3XPll9/1cO0FysHQRn53fSk+03Y0cLepJspsGIJIH9G2IbhHSRs6VIou3rJOkQAmYdBxn+RQSoAS2AHk79UTkx35gWRy/6qsLcZ/CMt6R+kw5jsezEaZhK+oRJCCCE2wAmVEEIIsQFOqIQQQogNuCk7BBtCCCHkbw7fUAkhhBAb4IRKCCGE2AAnVEIIIcQGOKESQgghNsAJlRBCCLEBTqiEEEKIDXBCJYQQQmyAEyohhBBiA5xQCSElngEDBiAyMlLblp6ejiFDhiA8PBxubm4YO3ZsofStKLNx40a4ublh8eLFhd2VYkGxn1Dnz58PNzc3xz8vLy9UrFgRHTt2xJtvvom0NJnKgPzdyTlecvu3cePGwu4qyQMnT57E5MmTsXPnTpfKT506FfPnz8fw4cMRGxuLvn375nmf+/btw3333Qc/Pz+EhISgb9++SEkx5aWx8uSTT6Jx48YICQmBj48P6tSpg8mTJyM93ZCyBdezcz3wwAOO8vXr18ebb76Z5z4XF9auXYvBgwejfv36KFWqlOUPorxw5MgReHl5wc3NDb/88kuuZR9//HG4ubmhS5cued5PgaZvu5W88MILiIqKwpUrV5CUlISNGzdi7NixeP311/HVV1/htttuK+wukiJCbGysZn/44YdYt26dZXudOnUKslvkJjl58iSmTJmCyMhINGrUSPvt/ffft6SfW79+PVq0aIFJkybla38nTpxAmzZtEBgYiKlTpyI9PR0zZszArl27sHXrVnh4eORaf9u2bWjdujUGDhwILy8v7NixA//5z3/wzTffYNOmTXB3/+t9Z+3atejatStuv/12PPfcc/Dz88ORI0dw4sSJfPW9OPDJJ59g4cKFaNy4MSpWrHhTbT355JMoXbo0Ll++nGu5X375BfPnz4eXl7PkdjdAFXPmzZunAKht27ZZfvv222+Vt7e3ioiIUBkZGTdsIz09/VZ2kRRxRowYoVy5FS5cuFAAvbGfkj6+r1y5oi5fvqy2bdumAKh58+a5VC8qKkp17tw53/sdPny48vb2VvHx8Y5t69atUwDU3Llz89XmjBkzFAC1ZcsWx7Zz586psLAw1aNHD3Xt2rV89zc/bNiwQQFQixYtKtD9KqVUQkKCyszMVEop1blzZxUREZGvdlavXq08PDzUs88+e8O5QimlsrKy1J133qkGDRqkIiIi8jU2iv0n39y4++678dxzzyE+Ph4fffQRgOtaSvZfd506dYK/vz/69OkD4HoC5ZkzZ6JevXrw8vJCWFgYhg0bhrNnz2rt/vLLL+jYsSPKlSsHb29vREVFYdCgQVqZzz77DE2aNIG/vz8CAgLQoEEDzJo1q2AOnNw0bdu2Rf369fHrr7+iTZs28PHxwTPPPAMASE5OxuDBgxEWFgYvLy80bNgQCxYs0Opna0/ys3FcXBzc3Nwwf/58x7akpCQMHDgQlStXhqenJypUqIBu3bohLi5Oq7tq1Sq0bt0avr6+8Pf3R+fOnbFnzx6tTG7juzBJSEjA4MGDUbFiRXh6eiIqKgrDhw9HZmamo0xqairGjh2LKlWqwNPTE9WrV8e0adO0N8vs8zdjxgzMnDkT0dHR8PT0xOzZs9G0aVMAwMCBAx2f7bPPc04NNfvaHDt2DCtWrHCUjYuLw7lz57B//36XEtB/8cUX6NKlC6pWrerY1r59e9SsWROff/55vs5Tdh9TU1Md2z755BOcOnUKL7/8Mtzd3XHhwgVbkr0fPXoUDz30kOMTcosWLbBixQpj2WvXruGZZ55BeHg4fH198cADD+CPP/7Qyhw6dAg9e/ZEeHg4vLy8ULlyZTzyyCPauTx9+jT279+PjIwMp/2rWLEiypQpc1PHeOXKFYwZMwZjxoxBdLTMIK8TGxuL3bt34+WXX873/krMJ98b0bdvXzzzzDNYu3YtHn/8cQDA1atX0bFjR7Rq1QozZsyAj48PAGDYsGGYP38+Bg4ciNGjR+PYsWN4++23sWPHDvz4448oU6YMkpOT0aFDB4SGhmLChAkICgpCXFwcvvzyS8c+161bh0cffRT33HMPpk2bBuC61vLjjz9izJgxBX8SSL44c+YM7r//fjzyyCP4xz/+gbCwMFy8eBFt27bF4cOHMXLkSERFRWHRokUYMGAAUlNT83V9e/bsiT179mDUqFGIjIxEcnIy1q1bh+PHjzsesLGxsejfvz86duyIadOmISMjA3PmzEGrVq2wY8cOTV+60fguLE6ePIlmzZohNTUVQ4cORe3atZGQkIDFixcjIyMDHh4eyMjIQExMDBISEjBs2DBUrVoVmzdvxsSJE5GYmIiZM2dqbc6bNw+XLl3C0KFD4enpiR49eiAtLQ3PP/88hg4ditatWwMAWrZsaelPnTp1EBsbiyeffBKVK1fGuHHjAAChoaFYtGgRBg4ciHnz5mHAgAE3PKaEhAQkJyfjjjvusPzWrFkzrFy50qVzc/XqVaSmpiIzMxO7d+/Gs88+C39/fzRr1sxR5ptvvkFAQAASEhLQvXt3HDx4EL6+vujbty/eeOONfH2ePHXqFFq2bImMjAyMHj0aZcuWxYIFC/DAAw9g8eLF6NGjh1b+5ZdfhpubG/71r38hOTkZM2fORPv27bFz5054e3sjMzMTHTt2xOXLlzFq1CiEh4cjISEBy5cvR2pqKgIDAwEAb7/9NqZMmYINGzagbdu2ee53Xpk5cybOnj2LZ599VntGS9LS0vCvf/3L8UdDvsnXO3QRIrdPvtkEBgaq22+/XSmlVP/+/RUANWHCBK3M999/rwCojz/+WNu+evVqbfuSJUuc7m/MmDEqICBAXb16Nb+HRQoQ0yffmJgYBUC9++672vaZM2cqAOqjjz5ybMvMzFR33nmn8vPzU+fPn1dK/fWpbMOGDVr9Y8eOaZ8lz549qwCo6dOn37B/aWlpKigoSD3++OPa9qSkJBUYGKhtv9H4Lkz69eun3N3djfdMVlaWUkqpF198Ufn6+qqDBw9qv0+YMEGVKlVKHT9+XCn11/kLCAhQycnJWtncPvn279/f8snQ9Fkv+3ni7LNx9r4+/PBDy29PP/20AqAuXbqUaxtKKbVlyxYFwPGvVq1aljFz2223KR8fH+Xj46NGjRqlvvjiCzVq1CgFQD3yyCNO92Fi7NixCoD6/vvvHdvS0tJUVFSUioyMdHxazh7HlSpVcoxtpZT6/PPPFQA1a9YspZRSO3bscOnT8KRJk4z3hTPy88k3MTFR+fv7Oz6/5zZXPPXUUyoqKspxzfjJNxf8/Pws3r7Dhw/X7EWLFiEwMBD33nsvTp8+7fjXpEkT+Pn5YcOGDQCAoKAgAMDy5ctx5coV4/6CgoJw4cIFrFu3zv6DIQWGp6cnBg4cqG1buXIlwsPD8eijjzq2lSlTBqNHj0Z6ejq+++67PO3D29sbHh4e2Lhxo0VayGbdunVITU3Fo48+qo3NUqVKoXnz5o6xmRM5vguLrKwsLF26FF27djW+zbm5uQG4fv+1bt0awcHB2jG2b98e165dw6ZNm7R6PXv2RGhoqO39HTBgAJRSub6dAsDFixcBXB8jkuw3xuwyuVG3bl2sW7cOS5cuxfjx4+Hr62vx8k1PT0dGRgb69euHN998Ew8++CDefPNNDBs2DJ999hkOHTrk4tH9xcqVK9GsWTO0atXKsc3Pzw9Dhw5FXFwc9u7dq5Xv168f/P39HXavXr1QoUIFx5t49hvomjVrcv2cO3nyZCilCuTt9F//+heqVauGIUOG5Fru4MGDmDVrFqZPn268nnnhbzGhpqena4OhdOnSqFy5slbm0KFDOHfuHMqXL4/Q0FDtX3p6OpKTkwEAMTEx6NmzJ6ZMmYJy5cqhW7dumDdvnuY99sQTT6BmzZq4//77UblyZQwaNAirV68umIMltlGpUiWLp2Z8fDxq1KiheWACf3kEx8fH52kfnp6emDZtGlatWoWwsDC0adMGr776KpKSkhxlsh+Yd999t2Vsrl271jE2szGN78IiJSUF58+fR/369XMtd+jQIaxevdpyfO3btwcAyzFGRUXdsj67gre3NwAYvUYvXbqklcmNgIAAtG/fHt26dcO0adMwbtw4dOvWDb/99ptlXzn/iAOAxx57DACwZcuWPPc/Pj4etWrVsmy/0TiuUaOGZru5uaF69eoOnT8qKgr//Oc/8cEHH6BcuXLo2LEj3nnnHZe06FvBTz/9hNjYWLzxxhuWe1UyZswYtGzZEj179rzp/ZZ4DfXEiRM4d+4cqlev7tjm6elpOclZWVkoX748Pv74Y2M72X8NZy9y/umnn/D1119jzZo1GDRoEF577TX89NNP8PPzQ/ny5bFz506sWbMGq1atwqpVqzBv3jz069fP4rxCii6uPBBvRPabl+TatWuWbWPHjkXXrl2xdOlSrFmzBs899xxeeeUVrF+/HrfffrvDASU2Ntao75Qurd/GpvFd1MnKysK9996L8ePHG3+vWbOmZt/MtbGDChUqAAASExMtvyUmJiIkJCRfbzsPPvgg+vbti88++wwNGzYEcN05Z8+ePQgLC9PKli9fHgBu+GWjoHnttdcwYMAALFu2DGvXrsXo0aPxyiuv4KeffirwP/DGjx+P1q1bIyoqyjHpnz59GsD163P8+HFUrVoV69evx+rVq/Hll19qToBXr17FxYsXERcXh5CQEAQEBLi03xI/oWavLezYsWOu5aKjo/HNN9/grrvuculmbdGiBVq0aIGXX34Zn3zyCfr06YPPPvvM8XnBw8MDXbt2RdeuXZGVlYUnnngCc+fOxXPPPadN7qR4ERERgd9//x1ZWVnapLV//37H7wAQHBwMQPfWBG78BhsdHY1x48Zh3LhxOHToEBo1aoTXXnsNH330kcM7sXz58o43tuJCaGgoAgICsHv37lzLRUdHIz09/aaO70Z/xNwKKlWqhNDQUGOQgK1bt1rWwbrK5cuXkZWVpb3ZNWnSBOvWrUNCQoL2Vnny5EkAyNen74iICBw4cMCyXY7jbORnZaUUDh8+bFnf36BBAzRo0ADPPvssNm/ejLvuugvvvvsuXnrppTz38WY4fvw44uPjjV8yHnjgAQQGBiI1NRXHjx8HcP0PGUlCQgKioqLwxhtvuBxFq3j9GZtH1q9fjxdffBFRUVFOlw707t0b165dw4svvmj5LdsTD7j+16BSSvs9++bJ/vxz5swZ7Xd3d3fHwHO2sJgUbTp16oSkpCQsXLjQse3q1at466234Ofnh5iYGADXH0ilSpWyaH+zZ8/W7IyMDMcnwmyio6Ph7+/vGCsdO3ZEQEAApk6datTtXY3MUxi4u7uje/fu+Prrr42TT/a91Lt3b2zZsgVr1qyxlElNTcXVq1ed7svX19dRPr/kZdlMz549sXz5cm35yLfffouDBw/ioYcecmy7cuUK9u/fr73NpqamGq/lBx98AACa3ty7d28AwH//+19L2dKlS+dLj+zUqRO2bt2qfS6+cOEC3nvvPURGRqJu3bpa+Q8//FDzQ1m8eDESExNx//33AwDOnz9vuUYNGjSAu7u79szLy7IZVzGd3/feew9LlizR/o0aNQoAMGPGDMeXyLvvvttSbsmSJQgNDcUdd9yBJUuWoGvXri73pcS8oa5atQr79+/H1atXcerUKaxfvx7r1q1DREQEvvrqK6eu5TExMRg2bBheeeUV7Ny5Ex06dECZMmVw6NAhLFq0CLNmzUKvXr2wYMECzJ49Gz169EB0dDTS0tLw/vvvIyAgAJ06dQIADBkyBH/++SfuvvtuVK5cGfHx8XjrrbfQqFEjRt8p5gwdOhRz587FgAED8OuvvyIyMhKLFy/Gjz/+iJkzZzq0+sDAQDz00EN466234ObmhujoaCxfvtyiBR48eBD33HMPevfujbp166J06dJYsmQJTp06hUceeQTAdZ1tzpw56Nu3Lxo3boxHHnkEoaGhOH78OFasWIG77roLb7/9doGfC1eZOnUq1q5di5iYGAwdOhR16tRBYmIiFi1ahB9++AFBQUF4+umn8dVXX6FLly4YMGAAmjRpggsXLmDXrl1YvHgx4uLiUK5cuVz3Ex0djaCgILz77rvw9/eHr68vmjdvnie9dcmSJS4tmwGAZ555BosWLUK7du0wZswYpKenY/r06WjQoIHmzJaQkIA6deqgf//+jnWxGzduxOjRo9GrVy/UqFEDmZmZ+P777/Hll1/ijjvuwD/+8Q9H/dtvvx2DBg3C//73P1y9ehUxMTHYuHEjFi1ahIkTJ2pRhCZPnuzSspQJEybg008/xf3334/Ro0cjJCQECxYswLFjx/DFF19YJIOQkBC0atUKAwcOxKlTpzBz5kxUr17dsRRx/fr1GDlyJB566CHUrFkTV69eRWxsLEqVKqVpk3lZNvP777/jq6++AgAcPnwY586dc7zpNmzY0DHRmc5vhw4dLO1l/6EVExPj+IOlatWq2jribMaOHYuwsDB079491z5ayLNfcBEj2xU6+5+Hh4cKDw9X9957r5o1a5bm6q3Udfd5X1/fG7b33nvvqSZNmihvb2/l7++vGjRooMaPH69OnjyplFJq+/bt6tFHH1VVq1ZVnp6eqnz58qpLly7ql19+cbSxePFi1aFDB1W+fHnl4eGhqlatqoYNG6YSExNvzUkgN8WNls3Uq1fPWP7UqVNq4MCBqly5csrDw0M1aNDAuMwiJSVF9ezZU/n4+Kjg4GA1bNgwtXv3bm1ZxunTp9WIESNU7dq1la+vrwoMDFTNmzdXn3/+uaW9DRs2qI4dO6rAwEDl5eWloqOj1YABA7Sx52x8Fxbx8fGqX79+KjQ0VHl6eqpq1aqpESNGqMuXLzvKpKWlqYkTJ6rq1asrDw8PVa5cOdWyZUs1Y8YMR8Sc7GUzN1pmtGzZMlW3bl1VunRp7TzbvWwmm927d6sOHTooHx8fFRQUpPr06aOSkpK0Mtl97t+/v2Pb4cOHVb9+/VS1atWUt7e38vLyUvXq1VOTJk0yRrbKzMxUkydPVhEREapMmTKqevXq6o033rCUGzdunHJzc1P79u1z2vcjR46oXr16qaCgIOXl5aWaNWumli9frpXJXjbz6aefqokTJ6ry5csrb29v1blzZy1C1NGjR9WgQYNUdHS08vLyUiEhIapdu3bqm2++0drLy7IZ+WzP+S/nuTSd39zay23JYzb5XTbjppT4fkkIIaRY0qxZM0RERGDRokWF3ZW/JZxQCSGkBHD+/HmEhoZi586dlJYKCU6ohBBCiA2UaC9fQgghpKDghEoIIYTYACdUQgghxAY4oRJCCCE2wAmVEEIIsQGXIyUVZJzMm6VUqVKanTP5MgAcOXLkptsErIHOGzRooNkyfmlRdqgurL7lZ1zZMRbl8brSpgx2Xrt2bc0+fPiwpU5mZmae+gFYx5ocV7/++qtmZwfPz4mz4Pim45VB9mW7cryb+i63FelxJYvIW9yVYSZPvcx9YH1sWPEXtsx/YM2nAKQ6aTPdsC1I2HKIJAnbdOnKONmvaUaR+e3lLSGjsZqiTIptRfVZyjdUQgghxAY4oRJCCCE2UGKC4+ekTBn9u0SVKlU025VPvvKTkSmPpSRnkGoA2LVrl9M6RCc/n3Nd+Xzr7BOR6XfZjrRljsejR49a2pBjUY4j0ydh+clX5kB15Rw5OycmCUMiP/nKOqZz5kpWmAJBviqYDtfZV0N5KKbPnc4eC6bfZV8uCFv2y5RWVabnlJ94rSqA9ZzIT61yPxcNbch2ZZvy8y5gPV6ZZEfmLTH1/bxhWxGEb6iEEEKIDXBCJYQQQmyAEyohhBBiA5xQCSGEEBsokU5Jly5d0uwhQ4Zodnbm9pzs3LlTs11Z59StWzfNHj16tGavWbPGaRt/d5w5/gCFt7ZR7ufyZd2LY+jQoZqdkZFhaePnn3/WbOnY4+8vFyECHTp00Ozhw4dr9sqVK2/Q479wdo5M51n2TdrS4cgVR71CQ74qmPy4pPOLtOUptOtwZTvyKSydn6xDBLgkbF9hy7WsAJAg7FRhS6ck0xCSDkWuzCDS6UjuRzplFRMHJBN8QyWEEEJsgBMqIYQQYgOcUAkhhBAbKJEaqlxM37p1a81u2rSppc7vv/+u2fPmzdPs559/3lLHy0sXB2TsXpJ35LUDrHqgKzFlnbWRH2Ss2xYtWmh2bGyspc6hQ4c0+/3339fsZ555xul+t2/fnms/8qNlms6Hs3aKSpxel5CaaZChjNRMZSADGdjBpMPaoavKNs4JW+qlAFBF2DKwQ5qhjtQ/5fGVFbbUNl3BNCTkeZXnXfajCA8rZ/ANlRBCCLEBTqiEEEKIDXBCJYQQQmygRGqoV67oYkFSkp7ozxQYXOa2fOeddzRbrm0FgD///FOzU1JS8tRPYs3bacrtKZHanaxzq3L3So0xOTlZs03jqnr16po9c+ZMzZZrWwHgzJkzmn369Om8dNOIK+t95bVwdh7zk4SgwJBSvNQPAefrTGUdV3Kb5ge5LtOV9aBSM00VtunJXl7YUqvNz6VzZb2vPB5ZRmqs1lvCfP2KIHxDJYQQQmyAEyohhBBiA5xQCSGEEBsokRqq5OJF/SN9pUqVLGXOn9cDSMp4vyatS65DvXAhPwu3SE7kGkvAqk1KjVxqqCYd1o64s7Jv6em6kFW+vBSprOPGWXxgwDqupH6fn/jHEtP5yGty8CKjl7qCn2GbjDErY8hKtwmTjpcfbU9eLtk3V2LbBgq7orBNrghJwvYWttSdTZqxHDbyWEz6p9R7ZR1pF5Ec9fmBb6iEEEKIDXBCJYQQQmyAEyohhBBiA5xQCSGEEBv4Wzgl7dmzR7Ojo6MtZTIzM3NtQzrCAFbnkYQEmcFXp0gvhC8knAVpAJwHHJC/m8iPU5JsVzpHyWQI999/v6UN6ejjSt9lggAZ2EE6R5mCjkjkec3PuJPHb+p7kUk6LoeRyVlGOuHI21M6LdmFh7B9hO0sSD9gdfSRpz3YUEde8jBhi/PhbriUlrtTnlfncVms/ZDHb82PwcAOhBBCyN8JTqiEEEKIDXBCJYQQQmygRGioUpeS+lBGRoZmmxawO2vj1KlTljp16tTJtQ3inII6Z6bA9c764UxDlUEZXAnsL8deYmKipUzNmjU129NTjy4uNVZXzuGtSA5u0lCLjE+A7JqpW/K0yTquJBiX+p+zoAWAVSOUWq0cRiYtV+qbUlOVQRsAwFfY8ukvjj/L9LolbyPZD5OELo9HnhN5baTGfKN2iyB8QyWEEEJsgBMqIYQQYgOcUAkhhBAbKBEaqjPdRiZ5Nq2VkzqUh4f+Id/f399SRyYYj4iIuKl+/h1xZR2qvF6yjitrO53pmyYdUm6T6z9r1arltA2JHFeBgTLKOXDunJ75OTIyMs/7uRUUq/Er9U/TMnMZhF4enitPR9muvDQm6V4m3DYF7s+JaR2qXJfpyhpaZxqx7Kup7/I2cmXdqUSeZ1eC4RcT9xS+oRJCCCE2wAmVEEIIsQFOqIQQQogNcEIlhBBCbKBEOCU5o127dpp9/PhxSxkZHN/khCSRThq1a9fOR+/+3shzmJ/g6jJYgisBB5wF8jD1RToltWrVSrNN40omVZBBGkxIB6oGDRrk2kZBJV2Q/XIlKUGhIYeRDDgPWF8npIONDJZgcvSRp9mV4SudoWTAhRNO9gFY+/6nsCMNdaTzT5Cw5fGZnJJuhV+a7JdpWOXH+akQKMJ3BCGEEFJ84IRKCCGE2AAnVEIIIcQGSqSGWqNGDc1OSUnRbBnU3IRcXG/SpOS2ChUquNpF8v9xJWi73OYs0bUrOqyzYPmANQi9TEyfnJys2RcvWoU6qTtKrd4VHTI0NFSzXQmGcSuCP7iy3yKDK0Hb5VCT8ra0pfZpQuqhpssr3TOkhij7ajrNGcKWT3JTznlZ5rywZdB+UzCMWxFgQQapMOm0xSSmCN9QCSGEEBvghEoIIYTYACdUQgghxAZKpIbauHFjzZYByU06ndTL5PpBLy/rIjSp1VWuXDlP/SSuIa+XKUF8XnGWPNxEkyZNcu2HTGQPWLVMqaGGhIRY6sixFx4ertmuaJcFEci+WAXLNyG1O2nnB5kc27R2VSKGnocuzRvfemQ8fSltpkh9FLAmQ08RtvOl9wWzHvTmb+9Cg2+ohBBCiA1wQiWEEEJsgBMqIYQQYgMlUkNt1qyZZkut07T2T2pdUqdyZV1fYmKiZsvE5ocPH3baBikY5PWVcXpNSG3elfWuznRWU8xoqecnJSVpdtWqVTVbrrMGSoC+WVyRazelbglYY+TKmMEC08gMcrKblDOGSnJdrXykyTomtwI7dOYSDN9QCSGEEBvghEoIIYTYACdUQgghxAY4oRJCCCE2UCKdkurXr6/Z0gFFLpwHrEmbpVOHyWlFtiudScqWLavZdEoqOkiHIhlwAbAGe6hZs6ZmyzFiGlfSmU06JZmch5wFzA8MDMx1HzdqlxQAMoC+KRCC9CASzj+u5CiXgR0qCft3k6OTHFbOEqjfikD4JRy+oRJCCCE2wAmVEEIIsQFOqIQQQogNlEgNNTIyUrOlPmbSQ6VeJhfkS30UsGpXsl2Z6Pznn382d5gUOqYgDfL6VqxYUbOlHmrSMuU4unBBF9lMdeQ2OTaZhKEYYc05b03knZL7zzJnOQCECru8LGB6VZKyurSPG+qQPME3VEIIIcQGOKESQgghNsAJlRBCCLGBEqmhVqlSRbMPHjyo2SY9VCLX8Zk0NrleUK5LbdCggdP9kKKL1D/luuIzZ/Ro4qbE3+np+mI/GcheaqqANZm9HHu1atXSbK45LWaI5N9BTopLvRQAagi7ibAXG9ahpjkJbO8l9N5LJXJ2uLXwDZUQQgixAU6ohBBCiA1wQiWEEEJsgBMqIYQQYgMlQnaWC9+9vb01Wzp1yED4JqTDkcnxw8PDQ7OlE0t4eLjT/ZCiiwzU4WxcmQKGyDLSccnkyCSdkmQAidBQk5sKKTaIYPgyGr6z+AuANb6+DJZvfLDL4Pdlcv/5kqkNkit8QyWEEEJsgBMqIYQQYgOcUAkhhBAbKBEaakRERK6/X7yor1j285OKgzU5tAxQbgpiLnXWS5d01aFq1aq59osUbSpUqKDZUkeX2qbUWAFrYAdZR44ZwDrWpDYfFRWVa79I0cZPaKbO3mr8DdtkeoRoYcuE4wBwVsamERqqJY7/VbmBOINvqIQQQogNcEIlhBBCbIATKiGEEGIDJUJDrV27dq6/y7V+pvWCMgm5K7qUM62rUiWTkkGKCzJBvFx3LK+/SUOV40iOMzlmTO3K8SuTP5DihUwYnixsucZUxNIHYH0TCnCyDwCAdAPRhzOcxM4nLsA3VEIIIcQGOKESQgghNsAJlRBCCLGBEqGhSq3Smf7pSoJxV9ahSi1W7te03pUUH5zFYvbx0dUuk4YqNVI5RkxjVa5vltotY/kWb2TMXCVi+14I1u2009Y2pEYq5FAYo5VnCjtMN7PkQtQkQxtc8pwrfEMlhBBCbIATKiGEEGIDnFAJIYQQG+CESgghhNhAiXBK8vfXw0c7S/wsnT4Aa5JyabsS6EEuwHfF+YncPCaHMUl+AsgHBgbm+rt0FjIFDJHjyBWcJbeXzm6m4//bB8yXp8R0OuRjQOZ6d+XpmI8A8pflBunLJjyKpC8RYD086aRkvPrSU0kOTeGkBIMzFKM/5A7fUAkhhBAb4IRKCCGE2AAnVEIIIcQGSoSGWrFiRc2WAciljmXSUJ1pTlIfNdWR7Xp66qKFSVOVic2JFWcaqfzddH2lru6KxugsQbwM7OBK0gVXguPLcSLH7/9j79zDdKraP/59DHM2Mw7jNJgZM86UkkPCIFGo+FEp5RQjUanelLcDOugthFSityilRBQinfT2KpKc5RTjNIMZhzHGYDDr90fXPO+sey3zPDPtOfb9XJfrcu+91tpr772evWbv733fSx7Hdty//biSt9c2hOQ2qSnKYSQzMgDmqtxeXPYMuaGisEVih/OJZhtS3a8kbKv3Rpiw5YLjsmN/8yGUH/iGSgghhDgAJ1RCCCHEATihEkIIIQ5QKjRUGS8odSpvEt1LjdTTIs+2bbYyOalYUYolwLFjx3Kt83fDdm/kNql/enN/pQ4ptUub7lqpklSmcm/T1oY8juyb1HYBIDU1VbM9xTPbFmE4depUrnVKPfJW2F4dpGYqf74y47wtpFjGdsrbaXnCpsvAUqGZSgHUpvbLw8oRbx0xO4R9vbCP6KYtCvu0rV3ihm+ohBBCiANwQiWEEEIcgBMqIYQQ4gCcUAkhhBAHKBVOSdIpIz9B7Z4cW2wOR9L5SSID7sPCwowydErSyU9Sd09OSt60a7u/npLjS2yJ8GVyD1kmI8MI88e5c3q2AH9/W0aB/xESEmJs+9s7Jcnbbfp+mchhI3NuSE8gG3IYWR4RWbIdOczO6+ZZy2Fk3nqZcL8GLMgkFOI4SNdNb06X6PANlRBCCHEATqiEEEKIA3BCJYQQQhygVGioUmM6e1ZXHWTAvU3rkrqbNwuMe1pQPCEhIdd+koLBm4UMvEHeT6nNe7PAuBxXsoxNh5caaoUKeuT/0aNHNTsgQK5QTQw8r0Fv6q7Szt1lwnuk4CnzvaTppjfyryxjU//LCVn9olyVXAivWZak/CR3+IZKCCGEOAAnVEIIIcQBOKESQgghDlAqNNQbbrhBs9PS0q5Q8k+kRmXb5mlhaMBz/KPUTOvXr2+0sXnz5lz7Sjwj74NTGmpcXJxmp6frgXrnz+uBfN7o7OXLl/dYJzk5WbODgnSxq1q1apodExNjtLFz505j29+K/Cww7qkNqX0C3gmckkBhHxa2LfBUkCzsH4VtS2LfWNib9ogNIu5WSqyAGf9KdPiGSgghhDgAJ1RCCCHEATihEkIIIQ5QKjTUt99+W7PHjBmj2TKfqtSxAKB69eqaffLkSc22xRhKXVVqbFL7+tvnV80nnhYYl3ha6N1bpk2bptnjxo3LUz8AoEWLFpp96NAhza5bt65RR8aVynhXGR8rFyQnXiI1VHk75TCy6aV5l+YRJNI3n5Vyd5hu2qKMTwh7v7A3WepslRvk+YtG8yMP/93hGyohhBDiAJxQCSGEEAfghEoIIYQ4ACdUQgghxAFcysuId9uizcWVO+64Q7MbNWqk2bZk4rt379bsTZs2eawjk0HIxA0ff/yxx74WF/KT+MAJvBlXcnED2deC6rvsW9++fTW7adOmmm1zXFuzZo1m//bbb5ptW3T+8mXdHeS6667T7Hnz5mm2TNpfnCg248r26iBvl3RC8mTnl3LClo8WaaeaTVwrkkzIXBEy8QNgJmU4WVlskF5IxdiHsqjGlSf4hkoIIYQ4ACdUQgghxAE4oRJCCCEO4LWGSgghhJArwzdUQgghxAE4oRJCCCEOwAmVEEIIcQBOqIQQQogDcEIlhBBCHIATKiGEEOIAnFAJIYQQB+CESgghhDgAJ1RC/gIulwvjxo1z23PmzIHL5cL+/fuLrE/EzsCBAxEVFaVtS09Px5AhQ1CtWjW4XC6MGjWqSPpWnMke0+vXry/qrhR7Su2EunfvXgwbNgx16tSBv78/QkJCcMMNN2DatGnGKjFOMW/ePEydOrVA2ibOkP1wyP7n7++PevXqYeTIkTh27FhRd4/8RZKSkjBu3DhjtagrMWHCBMyZMwfDhw/H3Llzcd999+X5mDt27MDNN9+M4OBgVKxYEffddx9SUlK8rr9kyRJce+218Pf3R+3atTF27FhcunRJK9OhQwdt3Ob8V66cXL6mdOHN9fGGjz76CC6XC8HBwca+K11bl8uFm266yetjmOtNlQK+/PJL3HHHHfDz80P//v3RpEkTZGZmYvXq1XjiiSewfft2zJo1y/Hjzps3D9u2beNfuSWA559/HtHR0Th//jxWr16NGTNmYPny5di2bRsCA+ViWKSkkJSUhPHjxyMqKgrNmjXT9r3zzjvIytLXYPv+++/RunVrjB07Nl/HO3z4MNq3b4/Q0FBMmDAB6enpmDRpErZu3Yp169bB19c31/orVqxAz5490aFDB0yfPh1bt27Fiy++iOTkZMyYMcNd7umnn8aQIUO0umfPnsUDDzyALl265KvvJQFvr48n0tPTMXr0aAQFBVn3z50719i2fv16TJs2LW/XV5Uy9u3bp4KDg1WDBg1UUlKSsX/Pnj1q6tSpBXLs7t27q8jIyAJpmzjD7NmzFQD166+/atsfe+wxBUDNmzcvT+0BUGPHjjXaT0hIcKC3zpOenl7UXSgQLl68qC5cuKB+/fVXBUDNnj3bq3rR0dGqe/fu+T7u8OHDVUBAgDpw4IB72zfffKMAqJkzZ3qs36hRI3X11Verixcvurc9/fTTyuVyqR07duRad+7cuQqA+uijj/Ldf2+40m+mMPgr1ycnTz75pKpfv77q16+fCgoK8qrO/fffr1wulzp06JDXxyl1E+oDDzygAKiffvrJY9mLFy+q559/XtWpU0f5+vqqyMhINWbMGHX+/Hmt3Oeff666deumqlevrnx9fVWdOnXU888/ry5duuQuExcXpwBo/zi5Fj+u9HBYtmyZAqBeeuklFRcXp+Li4oy6AwYMMO6ptxPqm2++qRo1aqR8fX1V9erV1YMPPqhOnTrl3j9ixAgVFBSkzp49axy3b9++qmrVqtp4W758uWrbtq0KDAxUwcHBqlu3bmrbtm1Gf4OCgtQff/yhbrnlFhUcHKxuv/32XK9PQXL48GE1ePBg9+8oKipKPfDAA+rChQvuMqdOnVKPPPKIqlmzpvL19VUxMTHqX//6l7p8+bK7TEJCggKgJk6cqKZMmaLq1KmjypQpo6ZMmWL8BnNOrjnv36pVq6xlExISVGpqqtqxY4dKTU31eE5VqlRRd9xxh7G9Xr166sYbb8y17vbt2xUA9eabb2rbExMTFQD1wgsv5Fr/lltuUUFBQX/pj6QNGzaom2++WZUvX14FBQWpTp06qTVr1mhlssf0f/7zHxUfH68qVqyoypcvr+677z518uRJreyvv/6qunTpoipVqqT8/f1VVFSUGjRokFYmKSlJ7dixQ2VmZubat796fbLZvXu38vX1VV9++aX7N+GJ8+fPq7CwMNWhQwevjpFNqfvku3TpUtSpUwdt2rTxWHbIkCF4//330adPHzz++OP45Zdf8PLLL2PHjh1YvHixu9ycOXMQHByMxx57DMHBwfj+++/x3HPPIS0tDRMnTgTw5yeZ06dP4/Dhw5gyZQoAWL/Vk+LJ3r17AQCVKlVyvO1x48Zh/Pjx6Ny5M4YPH45du3ZhxowZ+PXXX/HTTz+hXLlyuOuuu/Dmm2+65YpsMjIysHTpUgwcOBA+Pj4A/vw8NWDAAHTt2hWvvPIKMjIyMGPGDLRt2xYbN27UHG8uXbqErl27om3btpg0aVKRfc5OSkpCy5YtkZqaivj4eDRo0ACJiYlYuHAhMjIy4Ovri4yMDMTFxSExMRHDhg1D7dq18fPPP2PMmDE4cuSI4Z8we/ZsnD9/HvHx8fDz80OvXr1w5swZPPfcc4iPj0e7du0AwPosaNiwIebOnYtHH30UNWvWxOOPPw4ACA8Px4IFCzBo0CDMnj0bAwcOvOI5JSYmIjk5Gdddd52xr2XLlli+fHmu12Tjxo0AYNSvUaMGatas6d5vIyUlBd988w3uuuuuK37G9MT27dvRrl07hISEYPTo0ShXrhxmzpyJDh064D//+Q9atWqllR85ciTCwsIwbtw49xg+cOAAfvjhB7hcLiQnJ6NLly4IDw/HU089hbCwMOzfvx+LFi3S2hkzZgzef/99JCQkGE5iOfkr1ycno0aNQseOHdGtWzd8+umnXtVZvnw5UlNT0a9fP6/Ku8nT9FvMOX36tALg1V/hmzZtUgDUkCFDtO3/+Mc/FAD1/fffu7dlZGQY9YcNG6YCAwO1t1l+8i3+ZP+1/e2336qUlBR16NAh9cknn6hKlSqpgIAAdfjwYUffUJOTk5Wvr6/q0qWL9pb1xhtvKADqvffeU0oplZWVpSIiIlTv3r219j/99FMFQP34449KKaXOnDmjwsLC1NChQ7VyR48eVaGhodr2AQMGKADqqaeeyutlcpz+/furMmXKWD8bZmVlKaWUeuGFF1RQUJDavXu3tv+pp55SPj4+6uDBg0qp/72hhoSEqOTkZK1sbp98bfcvMjLS+OSbfQ89fTbOPtYHH3xg7HviiScUAONrV04mTpyoALjPKyctWrRQrVu3vmLd6dOnKwBq+fLlufYxN3r27Kl8fX3V3r173duSkpJU+fLlVfv27d3bsq9H8+bNtbfKV199VQFQX3zxhVJKqcWLF3v1aTh7XHqSRf7K9clm2bJlqmzZsmr79u3uY3vzhtq7d2/l5+enfUXyhlLl5ZuWlgYAKF++vMey2X89PvbYY9r27L9Uv/zyS/e2gIAA9//PnDmD48ePo127dsjIyMDOnTv/cr9J4dO5c2eEh4ejVq1a6Nu3L4KDg7F48WJEREQ4epxvv/0WmZmZGDVqFMqU+d/PbejQoQgJCXGPM5fLhTvuuAPLly9Henq6u9z8+fMRERGBtm3bAgC++eYbpKam4u6778bx48fd/3x8fNCqVSusWrXK6MPw4cMdPae8kpWVhc8//xy33nqr9W3O5XIBABYsWIB27dqhQoUK2rl17twZly9fxo8//qjV6927N8LDwx3v78CBA6GUyvXtFIA7WsDPz8/Y5+/vr5XJT/3c6s6bNw/h4eF58kDNyeXLl/H111+jZ8+eqFOnjnt79erVcc8992D16tXu52k28fHxmkfx8OHDUbZsWfezNCwsDACwbNkyXLx48YrHnjNnDpRSub6dAn/t+gBAZmYmHn30UTzwwANo1KhRrmVzkpaWhi+//BLdunVzn5O3lKpPviEhIQD+nPQ8ceDAAZQpUwaxsbHa9mrVqiEsLAwHDhxwb9u+fTueeeYZfP/998YgO336tAM9J4XNm2++iXr16qFs2bKoWrUq6tevr014TpE9jurXr69t9/X1RZ06dbRxdtddd2Hq1KlYsmQJ7rnnHqSnp2P58uUYNmyYe9LZs2cPAKBTp07W42X/BrIpW7Ysatas6dj55IeUlBSkpaWhSZMmuZbbs2cPtmzZcsVJMjk5WbOjo6Md62N+yP5D+8KFC8a+8+fPa2XyU/9Kdfft24c1a9Zg5MiRKFs2f4/wlJQUZGRkGOMS+PNzeFZWFg4dOoTGjRu7t9etW1crFxwcjOrVq7tjruPi4tC7d2+MHz8eU6ZMQYcOHdCzZ0/cc8891knRE/m9PtlMmTIFx48fx/jx4/N03M8++wznz5/P++delMIJtUaNGti2bZvXdbIfVFciNTUVcXFxCAkJwfPPP4+YmBj4+/tjw4YNePLJJw03fFIyaNmypfVtCfhzTCiljO2XL18u0D61bt0aUVFR+PTTT3HPPfdg6dKlOHfuHO666y53mezxNnfuXFSrVs1oQz5g/fz8CuQPhYIgKysLN910E0aPHm3dX69ePc329EAtaKpXrw4AOHLkiLHvyJEjqFixYq4TSc76tWrVMuq3bNnSWm/evHkAkK8HfkHicrmwcOFCrF27FkuXLsXKlSsxePBgTJ48GWvXrs2zT0l+rw/w54vOiy++iAcffBBpaWnuF6H09HQopbB//34EBgaiSpUqRt2PPvoIoaGh6NGjR576C5SyCRUAevTogVmzZmHNmjW4/vrrr1guMjISWVlZ2LNnDxo2bOjefuzYMaSmpiIyMhIA8MMPP+DEiRNYtGgR2rdv7y6XkJBgtOlpciYlgwoVKmDfvn3G9pxvk96SPY527dqlfVrLzMxEQkICOnfurJW/8847MW3aNKSlpWH+/PmIiopC69at3ftjYmIAAFWqVDHqFlfCw8MREhLi8Q/dmJgYpKen/6XzKszfYEREBMLDw60ZhNatW2fEwUqy969fv16bHJKSknD48GHEx8db682bNw8xMTHauMgr4eHhCAwMxK5du4x9O3fuRJkyZYxJbM+ePejYsaPbTk9Px5EjR9CtWzetXOvWrdG6dWu89NJLmDdvHvr164dPPvnEiKP1RH6vDwCcOnUK6enpePXVV/Hqq68a+6Ojo3H77bfj888/17YfOXIEq1atwsCBA/P1Vl0y/nTNA9nBu0OGDLFmvtm7dy+mTZvmHgTSc/C1114DAHTv3h0A3J6VOd9YMjMz8dZbbxltBwUF8RNwKSAmJgY7d+7Ust1s3rwZP/30U57b6ty5M3x9ffH6669rY+jdd9/F6dOn3eMsm7vuugsXLlzA+++/j6+++gp33nmntr9r164ICQnBhAkTrDpVXjL0FBZlypRBz549sXTpUuvkk31d7rzzTqxZswYrV640yqSmpnqVHSfb4zU1NTXf/T19+jR27tzp1W+5d+/eWLZsGQ4dOuTe9t1332H37t2at/bFixexc+dO7W22cePGaNCgAWbNmqV9/ZgxYwZcLhf69OljHG/jxo3YsWMH7rnnnvyeHoA/n2tdunTBF198oaXJPHbsGObNm4e2bdsa8sGsWbO0MTdjxgxcunQJt9xyC4A/JzH5ZSd7Usz52fbIkSPYuXNnrjorkLfrI+9ZlSpVsHjxYuNfx44d4e/vj8WLF2PMmDHGMT/55BNkZWXl/+0/Ty5MJYQvvvhC+fv7qwoVKqhHHnlEvfPOO+rNN99U/fr1U76+vio+Pl4p9T9vszvvvFO9+eabbrtnz57uto4fP64qVKigIiMj1eTJk9Vrr72mrrnmGnX11VcrAGrVqlXustleb48++qiaN2+eWrJkSWGfOvGAN0Hqv//+uypTpoy65ppr1BtvvKGee+45VaVKFdW0adN8xaGOHTtWAVBdunRRb7zxhnrooYeUj4+PatGihTUWLzY2VpUvX14BUL/99pux/6OPPlJlypRRTZo0US+++KKaOXOmevrpp1WzZs3UiBEj3OW89WgsDA4fPqyqVaumAgMD1ahRo9TMmTPVuHHjVOPGjd2elGfPnlXXXnutKlu2rBoyZIiaMWOGmjRpkvs8UlJSlFJ6HKokMzNThYWFqfr166t///vf6uOPP1b79u1TSjnv5auUUgcPHlSVKlVSMTEx6vXXX1cTJkxQFSpUUE2bNtU8fLP7PGDAAK3+0qVLlcvlUp06dVKzZs1SDz/8sCpTpozhxZ3N448/rgConTt3XrFP3nrRbtu2TQUFBamIiAj10ksvqVdeeUXVqVNH+fn5qbVr1xrXo2nTpqpdu3Zq+vTpauTIkapMmTKqbdu2bi/tKVOmqLp166rRo0ermTNnqkmTJqn69eurkJAQ9z3IS//ycn28vWeefhPNmzdXNWrU0Dzy80KpnFCV+jOYd+jQoSoqKkr5+vqq8uXLqxtuuEFNnz7dPdAvXryoxo8fr6Kjo1W5cuVUrVq1rIkdfvrpJ9W6dWsVEBCgatSooUaPHq1WrlxpTKjp6enqnnvuUWFhYUzsUEzxNuvLhx9+6E740axZM7Vy5cq/lNjhjTfeUA0aNFDlypVTVatWVcOHD7+iS/7TTz+tAKjY2Ngr9m/VqlWqa9euKjQ0VPn7+6uYmBg1cOBAtX79eneZ4jShKqXUgQMHVP/+/VV4eLjy8/NTderUUSNGjNASO5w5c0aNGTNGxcbGKl9fX1W5cmXVpk0bNWnSJPcfH7lNqEr9+Qd1o0aNVNmyZa+Y2CGbvzqhKvXnxNSlSxcVGBiowsLCVL9+/dTRo0e1MleaUJX6M9ykWbNmys/PT9WsWVM988wz1j+0Ll++rCIiItS1116ba3969+6tAgICvAr52LBhg+ratasKDg5WgYGBqmPHjurnn3/WysjEDhUqVFDBwcGqX79+6sSJE1pbd999t6pdu7by8/NTVapUUT169NDGpFJ5m1CV8u76ODGh7ty5UwFQjz32mFf9suFSyuJ9QQghpERStWpV9O/f3510hhQenFAJIaSUsH37dlx//fXYt28fKleuXNTd+dvBCZUQQghxgFLn5UsIIYQUBZxQCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEO4HUu3+KSp9bWD0+OyhUqVNDsU6dOGWWyc6RmI13ObYnR5SoIW7duzbUfxZmicvbOz7iSyd5l37PTRebluLYE8vKeyzqhoaGaffLkSaMNuUSVHIu2xRVkir3t27fn2ldbG57KeHO/nRgTxXpcySIyykRmxqtqaaOcsOVa37Yn7AkPdWTGQ8viWQEiq6pcn8eWpDFJDnFZSZ6/LYulLJMq7POWOvI6Zgpb3gdb58W24hqcwjdUQgghxAE4oRJCCCEOUOyXb5Of72yfXuXnHfkpNucq8wCQkZFhtCHXVpSrVfj6+hp15GoJ77zzjmZfaV1HcmVsn17lNrnmp/z8Y1t0WY4j+VnVNq5kO3LcyHFnWz1Dfmo9fvy4ZssVPWx13n//fc3+xz/+odm2T9yePoN78zvytNZvcf3sZsW2ZrncFiNsefoNLG3UEvY3wrZ9ea4o7EPC/kPY15pNNBGffOuK/V9ZDoswYcvlgOWyrrUtbcjPtbKMbYVDOcSTLWVyUjzUxXzBN1RCCCHEATihEkIIIQ7ACZUQQghxAE6ohBBCiAN4vdpMcYlDtdG3b1/Njo2N1eyrrrpKs/v06WO0MWnSJM2+5pprNLtz585GnW+//Vazhw4dqtmHDx/WbOkIA5jXtagcPYpzvKB0DpIOYnK/zZlGbrM55UjkuKpbV3f9aNy4sWbffvvtRhuvvPKKZterV0+zu3XrZtT573//q9kPPPCAZh89elSzMzOlp0j+4lA9jQFPTko2is24sg2zesLuJOyGwk60tCFjRvcJW8apAsAFYYcK+6Cwt5lNRJzT7Xixf7XlsN8KW0mHKunZJByfAJgORjJGVvQLgHmNJGeFbYtDFf5+xdUhjm+ohBBCiANwQiWEEEIcgBMqIYQQ4gDFPrGDN0htMikpSbNffPFFzV6+fLnRxs0336zZ0dHRHo/74IMPavb+/fs91pEUVy2gqJBJOLxB6qG25BASb/RAmSBEauLjx4/X7MWLFxtt3HDDDZpdrVo1zbbpn4888ohmy/Esz9c2huRvwhutulSPxeaWbfLpJ7W73cK2JYeQeXmlXmjm+jA1Q4mQ94MsuuSzwr5T2LY7+Y3UhKUttVtb32UZeQ1tB5buCnLIS9uze0OxhW+ohBBCiANwQiWEEEIcgBMqIYQQ4gCFqqF6E3MpYwyvvVbPDB0WFmbU8fPz02y5tqmMF7TF/slk+EeO6JmiZfygjfr16+faL6mFAaZmeOyYHvyVn9i/koxtTEhNVGqI3sShysUPvBlXsk6dOnU0W97v3r17G21s2LBBs+UYkG0A5m/Ak56fkmIuXCmT4cvx7U1y/BKtqcpXBVOqBvyELeNMo4RtWZfUKPOLsG2XUK4pmibsvbp59iaziWEiCb+UZcdVshw3StgiMLWV6MdmSxNGnnupw9rWQ5VuESVYI/UE31AJIYQQB+CESgghhDgAJ1RCCCHEAYpdLt9mzZppdrt27TR7165dRh2pD8mFoCMiIjT79GkzuaS/v79mb9y4UbNt8ZFSY5OXsnbt2rnuB8w4xAMH9BV65YLUBUVxyblqWxxclpGaqtQLbWO1eXM9ELFFixaavXu3DDoETp48qdlnzugiWvXq1TXbNq7kdd2yZYtmy3EHAEFBQZotz0fGstqQcajSJ+DECRlA6Tm+NT9jpMjGlY8YA1LrA4BAYVcQdoSwZXkAiBT258IOgom89FK7PSVsy6O3p8gHLL0zhAxrPSzK6+bVQiO2peWVa4OnNhEbpMgKAAnCljqrPF8vKK76Pt9QCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEOUOyS41eooHsG/PHHH5odHBxs1JGB7SEhujIuHTBsjj7XXXedZrds2VKzt20zV/kND9ezZZcvr6v8p07parvNEUQmIZCOTn83bEkZPDnEeZMMX46JPXv2aLZ0BALMJBsy+YO8v3Lhb8Bc3N4bZ6iqVavm2jfpLCWd8gDzOsokI7br7IQTUrFBDhmb44t0jpHJ8SsK2/bTlItwy0tmS3Qgy1QVtkh8EGjxS5Rdla5tGbAgnK7KiWuiP2mBs2GWNuR1lY80W+J/uU0usF6K4BsqIYQQ4gCcUAkhhBAH4IRKCCGEOECRaqg2PVTqkDIg/bbbbjPqbN26VbNtwfI5SU9PN7bJhORSy7x40VxtVyYUkJqTTDAhbQAIDAzM1f674c1iAJ60PW/G1aFDhzS7ffv2Rh2Z2F4mVJDaru3+2rTZnMhFzAFT75Qa8dmzZ3O1bceV49mWHL9UIU/viKWMHEY1hC2T5x+ASQthS93VluhghbDr5l4nw3xc4RehzcpRZDvsObEOw8XDul1J2GdTLY3I4SzFXFsdW4aIUgrfUAkhhBAH4IRKCCGEOAAnVEIIIcQBilRD9WaxcBnbJ2P0ADMeVGpKMlH4+fNmcFhamr66rtRMbbGQMq5UJkeX2pctXlJqtzI5vLwegF13Ky3YrrMnzVTut40rqavLhb5lonvAHFcyOb68DzYNVY4rORZtiwHIuGppyzq2ayYXc5B15LgDzIUaShU2KduiTWpIadqU5s12Zbxr7mvD/4nQLn2E3ms+AQAfYculO47Z3EhEmHS4OK4e3XwFpGYqhpHLopeW4GjmPMM3VEIIIcQBOKESQgghDsAJlRBCCHEATqiEEEKIAxSpU1JoaKixTTpGyMTfMiE5YDruyDLSacOWPEA6rZw7p6vrNkcmWUcGz0snFZtDlXQWkecrk7oDppNKacKbhOzy/sk6tsQO8l5IhzLbwgXy/spFFaSTmW1cyb7I40inJVsdmZRCOkfZxpV0SpLjypZApFQ7JXlyQAKAJGFLHzNbcnyZUX6vsGtZ6ghHnkDhhCRdDm1OSUflEBfn18ySlH+TPoyQIhyqgoUTls2v6YzoXDlh17HU2WnZVlrhGyohhBDiAJxQCSGEEAfghEoIIYQ4QJFqqN7oODKJt20B7sqVK2t2cnKyZudn4WQZgC8T4QOmhiYD/b1JKCHLSGx1iI68n7Yx4une2BZUqFSpkmbLZBASbxbtlse1Je6Q40qOAdmGLdGH1Iw99YNYSBW27ZLJMlKrteVgEdtkWg6ZpMF88ph9kW9GUsoFYCwYUFlopvJJY1PUleiMn2jTtn7A3wm+oRJCCCEOwAmVEEIIcQBOqIQQQogDFKmGatOtpGYq9SNbzF2FChU0Wyapl1qYLTG41JRkP2wxelIzk9qXjDGMi4sz2ti4caNmS63Llvic5I7t/kqdUcYZyzECABUr6qtFy/hmORZt41keV44j2+LgMrm/1O/T03WhzrY4+qZNmzT7bzeupDTtzXoS8mkoxUxbLOseYcvk8PssdcQwqao/rrBPHPeyvk4HAKCKEDxljn5bPOh3CbotJWF5euZyEcB5oZnKNv7uyjzfUAkhhBAH4IRKCCGEOAAnVEIIIcQBilRDtWldMn5Oaj223LZyEXKpQUn9yBYvKBcUl3qoLXZV1rEtFp2TPn36GNt2796t2TLW0abLlSbk/fUmRtgTtnEl89/K48p8uYB5L6Sm6s24kpqpN+cr/QZsMdA5+b//+z9j265duzT72LFjmi1z/ZY6cr9kduQlETql7Zd4XgZeSu3WFkZ+PFcTEJqp7akis6DL0zVHIhAk9F1PT5bKlm1S8RdrlCPCUme/h+OUJviGSgghhDgAJ1RCCCHEATihEkIIIQ7ACZUQQghxgCJ1SrIlBve0OHj9+vWNOtKJQwbTy2Tpnpw8bGVsDifScUkG3Et69eplbJs8ebJmSycW22LZpQlvEg7k1VHJ5pQkFweXx6lXr55RRyZ/8OS4ZnNKkwlDvFnsXo49uTi4pEePHsa2KVOmaLan30SpQ15W6cUDACKhAuQwk4ngLVkLqos6CTKBxEmzjkskR5BLzMslQzIsOThixXHlYW2J7WX3Y4V9VNjXWdpYLmz5BC/SCaUYwDdUQgghxAE4oRJCCCEOwAmVEEIIcYAi/eRt08ZkQnmps0ZHRxt1ZNC+rCOTI0gtzNYXqW3JZPk2PCWlkAkoACAiQg+F3rJli2ZLna60Ia9RfpK2e5NgQY4rmdggMjLSqCMXWZDjSuqQtjGSn3EkdVfbwgw5SU5ONrbJcbV9+3aPxy1VSBndlNUBmSNGDhuRlMHWhKwSJB5pZ42sDWbyg8NCiLwkBdFws40QcctPif2HzCqQXgI7hS1VdfNpZb6BnRG21GX/bpTupzUhhBBSSHBCJYQQQhyAEyohhBDiAIWqoUot06YPyng5WzJ8SWCgHrklF22WmpRNQ/WULNwWYyi1O6l1SR2rRo0aRhs1a9bM9bilXUOV1zA/yfGltmm7ZjJW2ZYMXyLHldTI5TiyaZ2yL1JDtfVVXgNZp3p1feln2xiqVauWsc3TcUsVMrjThpTrhUgqYyxtI1NGiUv501w+3sh9jyBRST5pMjNgUEXY8ikpQ2wBIFXYUt6VbcjygOd12s3MAg5RQtYIKeW/KkIIIaRw4IRKCCGEOAAnVEIIIcQBOKESQgghDlCoTkneJKWXAfi2pOUSmcRcOjbJ49oSzntyFvEmOb50XEpMTNRsW2KHunXrGttyYnPSkefjTbKA0oy8D7bkEDL5hxxXtmsonZCk05E8rnRiAsxxI8eIN/dXHufIkSOafezYMaON2Ni/e4i9F8hLL14vpJuiLb2GdDqSyRFMN0TTvyZF2BVlBcuaG3K0SickmXABAKRvkxyt0o8r1dKGpwnDdtyqwjZHqxeUkEcc31AJIYQQB+CESgghhDgAJ1RCCCHEAYpdcnypW1177bUe60gN1VPScltiB086pEwOAZj6mKfE7jLhBGBfMD0ntgB8qcP93TVUb5JDyMQO112nL59s08jlWJTjypuEIZ7ujTeJLDwtdi/PDQAaNmyYa5u2RCVym23MeyI/ixsUG/THiKGHmnfX1D9lAv0wSx3pwSE9S+SdsS0FL++4HEW2xPZyhBsLl4tGkixtWORcjRMe9ucb28oExRC+oRJCCCEOwAmVEEIIcQBOqIQQQogDFKqGKhPQ2/QWqSlVrKhHZXkTYxgUFKTZvr76B3hbPKyMMbRpTBKpj0mNTWpqJ06YCoOn49i0vRKtUxUA3sQ3y3EVFhbmsY4cV6GhoZotx5VN75ZjwJu+5nVcnTx50mjD07iyabdOjKv8LG5QKNguu/xpia5XF7tt8ZPybCsLOwgmso68U7Kr3ixsnvvSHlfAg4Zqyclv9E16CJhqvkN57UuImwjfUAkhhBAH4IRKCCGEOAAnVEIIIcQBClVD9UbLlLFvUj+yaTSnT+uZLKtW1bNHyjq2XL5ykWqpXdqOKzVhqaHJvMSyn4DnhaBtsYClfnFogdT25L2QeqFtXMn7KfPu2u6v1FDlgvHy3tgWLZfjypsFxmUdOc7kuJI24Hnhelt8rLxutrjaEotNZJSXXoiGFcRuGXMKmDl0pV5oW3BbLuwtcwRLzdSWQ1jeGXmck6EwkaKoXFFcuHhctImfNpHUw25HnlaeVjYvJvy9nsyEEEJIAcEJlRBCCHEATqiEEEKIA3BCJYQQQhygUJ2SPDmX2KheXQ+v/uOPP4wysh3pgCKdR2yOPnKbdNDwJujdloQhJzt27DC2eUqOT6ekvCcL8HQfgPyNK2lLxx6bo4+ncWVD9t/T+fz+++/GtvyMq1KdMMR2CT34XMkFuL1JUCB/mbYrKg97WRQ6IYb7OctTOkvcPsNxyeIdFCgOnOHpZ2XzMPKQ2cHmOySdu0ozf68nMyGEEFJAcEIlhBBCHIATKiGEEOIARaqheqN11a5dW7MPHz7ssV0ZGC81R5kswlZG6mU23VKWsbWbk/R0c3leT0kJbLqcN4n7/07kJyF7ZGSkZicmJhpl5L3w989dRZPJImxtyLHqjR4ux7NEJqAAzGQQEttv7283rjwkXJfaX7IXTUrZ8ayljLGUQZhuZp0S+808NMhM1W0jtYdFH5Y6a4DoiFhf3ap9nhJDvKYYeoctQzXLiaQMxXTNBQnfUAkhhBAH4IRKCCGEOAAnVEIIIcQBilQ0kcnybUhdcs+ePUYZqTNeuKB/tPcUP2gr403fbO3kxtmzpqIiz0/qcLZ4QW/69ndC6pKetGzAvM67d+82yniKZ85rvCjgWdu0teMpSX1GhrkUtKdxZaNUx6HaMsx7QP7yzla0FBI6pJQ/bdKfkkNArGNwUTZi0SWlVmvcOUu48yUxPD29TVnz4IsDGU/AaLNK2E7dti3UXlrgGyohhBDiAJxQCSGEEAfghEoIIYQ4ACdUQgghxAEK1SlJBsZ749QTFRWl2T///LNRJjpaV8Jl4vNz5/SQ5VOnpOrvOcGCLehdOph4cjiR/QCA0NDQXI9rc0oiOp4SLtioW7euZq9bt84oExsbq9kRERGaLcfR6dOnjTbkuJFjxDau5Bjw5IR2/rzpPlKpUiXNlk5KNgcqbxL3/62pbtkmszQ00s1UW2YH+RoToptyRFywtCGfnEZiB8tjI8hDG5Jzttetxrp55LjYX96sckhukI9JD4sUWOsUU/iGSgghhDgAJ1RCCCHEATihEkIIIQ5QqBqq1Its2o+nhOTr16836siAdJnYQSYgr1jRjNCWSRdknaAgqUAA5cvrgoHUpWTfN2zYYLRx9OhRza5Vq5Zm79q1y6jjTXKAvxNSY5T330ZwsJ5x3KahyrFo08BzaxMwx5Xsm03/leNKJh2R9/+3334z2jh2TA+fl34GtkXJPSXh94bSlBxCyoOGCAkjJwMOCw0VKywNNxG20EgjxO5y5poahv4pJdNKlowSso60qwk7xZKn5LLMDxIp7CNmnQyZZyX3n5Gdvz40CwW+oRJCCCEOwAmVEEIIcQBOqIQQQogDFKqGKrUg28LQNWrU0Gypjy1cuND5juWTEydO5Km8Tf+V2mynTp00e+vWrR7r/N3xJkm9jCGVeueCBQuMOlJDle3mZ2Fzb0hNTc1TeZuGGhKiBzfKcWXT853QUAvqmhQFxsPREg9qLEvQSti2x1VS7o3slmHHlsT+2y3N/lWOyg22162qwpYBsIbwDGcWB3dikfJCgG+ohBBCiANwQiWEEEIcgBMqIYQQ4gCFqqFGRupBSzKPLQCEhYVp9gsvvFCQXSpyXn/9dc1OSEjQ7GrVZHSYGSNry038d6Jhw4aabRtXMvb4mWee8dhuSdEDbbGfU6dO1Ww5rqpWlWIYkXwtg0wtT8uTUu9clY8DeV6XvnCQ52LJywuZrloOvTNmlTIi3UC+TtebfL/FAL6hEkIIIQ7ACZUQQghxAE6ohBBCiANwQiWEEEIcoFCdktLT9SzPtiTvaWl6pPAPP/yQ5+NIJ43i7Fzy2WefaXZmph7FzUWfPSMX9vZmXH333XeabXPskYkcpDNYcRlXtn7Mnz9fs2VSftu4yuv52K5ZcbkmTuBzWLcv2xxjZFb6fcIOs9QR7UImnLckcigU5O2Ui6cDgFxTQSZckI5NALLkdfPkYGTLW+NpNfRiAt9QCSGEEAfghEoIIYQ4ACdUQgghxAFcqjSJHoQQQkgRwTdUQgghxAE4oRJCCCEOwAmVEEIIcQBOqIQQQogDcEIlhBBCHIATKiGEEOIAnFAJIYQQB+CESgghhDgAJ9S/wJw5c+ByubB///481x04cCCioqIc7xMpuezfvx8ulwuTJk0q6q6UOmy/t/T0dAwZMgTVqlWDy+XCqFGjiqRvxRmOybxR4ibUrVu3ok+fPoiMjIS/vz8iIiJw0003Yfr06UXdNVIC4PgpvSQlJWHcuHHYtGmTV+UnTJiAOXPmYPjw4Zg7dy7uu+++PB9zx44duPnmmxEcHIyKFSvivvvuQ0pKild158+fj3vvvRd169aFy+VChw4drOW2b9+OO+64A3Xq1EFgYCAqV66M9u3bY+nSpXnub0kjv9f3hx9+gMvluuK/l156yV02+8XI9u/o0aN56m+hLt/2V/n555/RsWNH1K5dG0OHDkW1atVw6NAhrF27FtOmTcNDDz1U1F0kxRiOn9JNUlISxo8fj6ioKDRr1kzb98477xjL8X3//fdo3bo1xo4dm6/jHT58GO3bt0doaCgmTJiA9PR0TJo0CVu3bsW6devg62tZyywHM2bMwG+//YYWLVrgxIkTVyx34MABnDlzBgMGDECNGjWQkZGBzz77DLfddhtmzpyJ+Pj4fPW/uPNXrm/Dhg0xd+5cY/vcuXPx9ddfo0uXLsa+559/HtHR0dq2sLCwvHValSC6deumwsPD1alTp4x9x44dK/T+zJ49WwFQCQkJea47YMAAFRkZ6XifyJUpbuNHkpCQoACoiRMnFtgxzp49W2BtFxUXL15UFy5cUL/++qsCoGbPnu1VvejoaNW9e/d8H3f48OEqICBAHThwwL3tm2++UQDUzJkzPdY/ePCgunz5slJKqcaNG6u4uDivj33p0iV19dVXq/r16+e533mhMMbklfir19dGbGysqlu3rrYt+zn+66+//qX+KqVUifrku3fvXjRu3Nj6V0OVKlXc/589ezY6deqEKlWqwM/PD40aNcKMGTOMOlFRUejRowdWr16Nli1bwt/fH3Xq1MEHH3xglN2+fTs6deqEgIAA1KxZEy+++KLxFy8AfPHFF+jevTtq1KgBPz8/xMTE4IUXXsDlyyVkhdxSjLfjx+VyYeTIkfj888/RpEkT+Pn5oXHjxvjqq6+MeomJiRg8eDCqVq3qLvfee+9pZTIzM/Hcc8+hefPmCA0NRVBQENq1a4dVq1Z57LNSCvHx8fD19cWiRYvc2z/88EM0b94cAQEBqFixIvr27YtDhw5pdTt06IAmTZrgt99+Q/v27REYGIh//vOfHo9ZECQmJuL+++93/y6io6MxfPhwZGb+bzXt1NRUjBo1CrVq1YKfnx9iY2PxyiuvaL+znJre1KlTERMTAz8/P7z11lto0aIFAGDQoEHuT3Zz5swBoGuo2Z8DExIS8OWXX7rL7t+/H6dPn8bOnTuNRettfPbZZ+jRowdq167t3ta5c2fUq1cPn376qcf6tWrVMhat9xYfHx/UqlULqamp+aoPAMnJybj//vtRtWpV+Pv74+qrr8b7779/xfJTpkxBZGQkAgICEBcXh23btmn7jx49ikGDBqFmzZrw8/ND9erVcfvtt2s+JoV5fSXr1q3DH3/8gX79+l2xzJkzZ/7Ss7pEffKNjIzEmjVrsG3bNjRp0uSK5WbMmIHGjRvjtttuQ9myZbF06VI8+OCDyMrKwogRI7Syf/zxB/r06YP7778fAwYMwHvvvYeBAweiefPmaNy4MYA/B0rHjh1x6dIlPPXUUwgKCsKsWbMQEBBgHHvOnDkIDg7GY489huDgYHz//fd47rnnkJaWhokTJzp7QUie8Hb8AMDq1auxaNEiPPjggyhfvjxef/119O7dGwcPHkSlSpUAAMeOHUPr1q3dE3B4eDhWrFiB+++/H2lpaW4nl7S0NPz73//G3XffjaFDh+LMmTN499130bVrV6xbt874PJnN5cuXMXjwYMyfPx+LFy9G9+7dAQAvvfQSnn32Wdx5550YMmQIUlJSMH36dLRv3x4bN27U/mA4ceIEbrnlFvTt2xf33nsvqlat+pevY15JSkpCy5YtkZqaivj4eDRo0ACJiYlYuHAhMjIy4Ovri4yMDMTFxSExMRHDhg1D7dq18fPPP2PMmDE4cuQIpk6dqrU5e/ZsnD9/HvHx8fDz80OvXr1w5swZPPfcc4iPj0e7du0AAG3atDH6k/058NFHH0XNmjXx+OOPAwDCw8OxYMECDBo0CLNnz8bAgQOveE6JiYlITk7GddddZ+xr2bIlli9fnv8LdgXOnj2Lc+fO4fTp01iyZAlWrFiBu+66K19tnTt3Dh06dMAff/yBkSNHIjo6GgsWLMDAgQORmpqKRx55RCv/wQcf4MyZMxgxYgTOnz+PadOmoVOnTti6dat7TPXu3Rvbt2/HQw89hKioKCQnJ+Obb77BwYMH3X/MLF68uMiu70cffQQAV5xQO3bsiPT0dPj6+qJr166YPHky6tatm7eD/OV33ELk66+/Vj4+PsrHx0ddf/31avTo0WrlypUqMzNTK5eRkWHU7dq1q6pTp462LTIyUgFQP/74o3tbcnKy8vPzU48//rh726hRoxQA9csvv2jlQkNDjU++tmMPGzZMBQYGqvPnz7u38ZNv4ePt+AGgfH191R9//OHetnnzZgVATZ8+3b3t/vvvV9WrV1fHjx/X6vft21eFhoa6x8KlS5fUhQsXtDKnTp1SVatWVYMHD3Zvy/l57eLFi+quu+5SAQEBauXKle4y+/fvVz4+Puqll17S2tu6dasqW7astj0uLk4BUG+//XZeL5Wj9O/fX5UpU8b6SS0rK0sppdQLL7yggoKC1O7du7X9Tz31lPLx8VEHDx5USv3vGoWEhKjk5GStbG6ffG2/t8jISOOTb/bnP0+fjbOP9cEHHxj7nnjiCQVA+717wptPvsOGDVMAFABVpkwZ1adPH3Xy5Emvj5GTqVOnKgDqww8/dG/LzMxU119/vQoODlZpaWlKqf9d74CAAHX48GF32V9++UUBUI8++qhS6s/xDC8+DRfV9b106ZKqWrWqatmypbFv/vz5auDAger9999XixcvVs8884wKDAxUlStXdo87bylRE6pSSq1bt0716tVLBQYGugdXeHi4+uKLL6zlU1NTVUpKipowYYICoFJTU937IiMjVaNGjYw6V111lerVq5fbrlevnmrdurVR7sEHH8xVQ01LS1MpKSnqww8/VADUpk2b3Ps4oRYN3owfAKpbt25G3ZCQEPcDJCsrS4WFhan4+HiVkpKi/ct+aKxevdpo4/Lly+rEiRMqJSVFde/eXTVr1sy9L/vh9dJLL6mePXuqoKAgtWrVKq3+a6+9plwul9qzZ49x3IYNG6rOnTu7y8bFxSk/Pz9jMi9MLl++rEJCQtTtt9+ea7mrrrpK3XzzzcY5ffvtt9qDP/saDRo0yGjDiQnVW3788UcFQM2fP9/Y9+yzzyoAVq3+Sngzoe7YsUN988036v3331fdu3dXvXr1UkePHs1jz/+kS5cuqlq1am4NN5uPP/5YAVBLly5VSv3vet99991GG61atXJruOfPn1e+vr6qe/fu+Z7kc+L09V25cqUCoKZNm+ZV+f/+97/K5XKpYcOGeX0MpZQqUZ98AaBFixZYtGgRMjMzsXnzZixevBhTpkxBnz59sGnTJjRq1Ag//fQTxo4dizVr1iAjI0Orf/r0aYSGhrrtnN/ns6lQoQJOnTrltg8cOIBWrVoZ5erXr29s2759O5555hl8//33SEtLM45NihZvxg/geVykpKQgNTUVs2bNwqxZs6zHSk5Odv///fffx+TJk7Fz505cvHjRvV16FQLAyy+/jPT0dKxYscIIpdizZw+UUlf8FFWuXDnNjoiI8OhtWpCkpKQgLS3N4yf2PXv2YMuWLQgPD7fuz3ktAft1K0yy5Z4LFy4Y+86fP6+VcYoGDRqgQYMGAID+/fujS5cuuPXWW/HLL7/A5XLlqa0DBw6gbt26hobbsGFD9/6c2MZbTi3Tz88Pr7zyCh5//HFUrVoVrVu3Ro8ePdC/f39Uq1YtT30DnL++H330EXx8fLz+RN62bVu0atUK3377rdfHAEqYhpoTX19ftGjRAi1atEC9evUwaNAgLFiwAPfeey9uvPFGNGjQAK+99hpq1aoFX19fLF++HFOmTDEciXx8fKztK6Xy3KfU1FTExcUhJCQEzz//PGJiYuDv748NGzbgySeftDoxkaLhSuMnO4TC07jIvpf33nsvBgwYYC171VVXAfjTgWjgwIHo2bMnnnjiCVSpUgU+Pj54+eWXsXfvXqNe165d8dVXX+HVV19Fhw4d4O/v796XlZUFl8uFFStWWPsYHBys2U4/1AuKrKws3HTTTRg9erR1f7169TS7qM+revXqAIAjR44Y+44cOYKKFSvCz8+vQPvQp08fDBs2DLt377b+cV/YjBo1Crfeeis+//xzrFy5Es8++yxefvllfP/997jmmmvy1JaT1/fcuXNYvHgxOnfunCcfglq1amHXrl1elwdK8ISak2zh+siRI1i6dCkuXLiAJUuWaG8Z3nhUXonIyEjs2bPH2C4v9g8//IATJ05g0aJFaN++vXt7QkJCvo9NCp6c48dbwsPDUb58eVy+fBmdO3fOtezChQtRp04dLFq0SHuTuFL8Y+vWrfHAAw+gR48euOOOO7B48WKULfvnTzUmJgZKKURHRxuTTHEkPDwcISEhhkeoJCYmBunp6R6vZW7k9S3trxAREYHw8HCsX7/e2Jebo5mTnDt3DkD+vnxFRkZiy5YtyMrK0t5Sd+7c6d6fE9vzb/fu3Ub2qZiYGDz++ON4/PHHsWfPHjRr1gyTJ0/Ghx9+mKf+OXl9lyxZgjNnzuTq3Wtj3759V/xiciVKVNjMqlWrrG+O2R5f9evXd//VnrPc6dOnMXv27Hwft1u3bli7di3WrVvn3paSkuL2GsvGduzMzEy89dZb+T42cQ5vxo+3+Pj4oHfv3vjss8+sk0XObC62cfHLL79gzZo1V2y/c+fO+OSTT/DVV1/hvvvuc78R/9///R98fHwwfvx441yUUrkmCCgKypQpg549e2Lp0qXWh2P2Odx5551Ys2YNVq5caZRJTU3FpUuXPB4rKCjIXT6/5CWso3fv3li2bJkWrvTdd99h9+7duOOOO9zbLl68iJ07d+bpD7acyM/d2W1+8MEHCAgIcMsUeaFbt244evQo5s+f79526dIlTJ8+HcHBwYiLi9PKf/7550hMTHTb69atwy+//IJbbrkFAJCRkeH+FJtNTEwMypcvr322LYrrO2/ePAQGBqJXr17W/bbMS8uXL8dvv/2Gm2++2WM/c1Ki3lAfeughZGRkoFevXmjQoAEyMzPx888/Y/78+YiKisKgQYNw7Ngx+Pr64tZbb8WwYcOQnp6Od955B1WqVMn3gB49ejTmzp2Lm2++GY888og7bCb7r7xs2rRpgwoVKmDAgAF4+OGH4XK5MHfu3Hx9PibO4834yQv/+te/sGrVKrRq1QpDhw5Fo0aNcPLkSWzYsAHffvstTp48CQDo0aMHFi1ahF69eqF79+5ISEjA22+/jUaNGiE9Pf2K7ffs2ROzZ89G//79ERISgpkzZyImJgYvvvgixowZg/3796Nnz54oX748EhISsHjxYsTHx+Mf//jHX7pOTjNhwgR8/fXXiIuLQ3x8PBo2bIgjR45gwYIFWL16NcLCwvDEE09gyZIl6NGjhzts7ezZs9i6dSsWLlyI/fv3o3LlyrkeJyYmBmFhYXj77bdRvnx5BAUFoVWrVnnSW70N6wCAf/7zn1iwYAE6duyIRx55BOnp6Zg4cSKaNm2qjaXExEQ0bNgQAwYMcMfFAsCPP/6IH3/8EcCfD/WzZ8/ixRdfBAC0b9/e/ZVr2LBhSEtLQ/v27REREYGjR4/io48+ws6dOzF58mTtM/+cOXO86n98fDxmzpyJgQMH4rfffkNUVBQWLlyIn376CVOnTkX58uW18rGxsWjbti2GDx+OCxcuYOrUqahUqZL7E/3u3btx44034s4770SjRo1QtmxZLF68GMeOHUPfvn2L5PoCwMmTJ7FixQr07t3bkEOyadOmDa655hpcd911CA0NxYYNG/Dee++hVq1aeY/bzpMLUxGzYsUKNXjwYNWgQQMVHBysfH19VWxsrHrooYe0TDdLlixRV111lfL391dRUVHqlVdeUe+9957hkXslL7+4uDjD427Lli0qLi5O+fv7q4iICPXCCy+od99912jzp59+Uq1bt1YBAQGqRo0a7tAMAJrHJr18Cx9vxw8ANWLECKN+ZGSkGjBggLbt2LFjasSIEapWrVqqXLlyqlq1aurGG29Us2bNcpfJyspSEyZMUJGRkcrPz09dc801atmyZcYYuFJWmrfeeksBUP/4xz/c2z777DPVtm1bFRQUpIKCglSDBg3UiBEj1K5du9xl4uLiVOPGjfN7uRzlwIEDqn///io8PFz5+fmpOnXqqBEjRmgeyGfOnFFjxoxRsbGxytfXV1WuXFm1adNGTZo0yR3a5ClzzxdffKEaNWqkypYtq3n8Oh02k822bdtUly5dVGBgoAoLC1P9+vUzPG+z+yzHztixY92e5vLf2LFj3eU+/vhj1blzZ1W1alVVtmxZVaFCBdW5c2drZMP06dMVAPXVV1957PuxY8fUoEGDVOXKlZWvr69q2rSpcd45r/fkyZNVrVq1lJ+fn2rXrp3avHmzu9zx48fViBEjVIMGDVRQUJAKDQ1VrVq1Up9++qnWXmFeX6WUevvttxUAtWTJkise4+mnn1bNmjVToaGhqly5cqp27dpq+PDh+fKgdinF1ydCCCkN3Hnnndi/f78mT5HCo0R98iWEEGJHKYUffvghzw5AxDn4hkoIIYQ4QIny8iWEEEKKK5xQCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEO4HXYTGHmySSFT1E5e5fkcZWfvv/dnOqLbFyVFffmcn4aEXZBnYpc48Cbp7LsS6ZDfSkhFNffEd9QCSGEEAfghEoIIYQ4ADMlkSJFfjYtrp9ybJSkvv7tkJ9R8/PJt7Bur+ybXDaZw6zEwDdUQgghxAE4oRJCCCEOwAmVEEIIcQBOqIQQQogD0CmJFCl07CEFwkVhSyclIH+OSoVBUf0knHDk+pvDN1RCCCHEATihEkIIIQ7ACZUQQghxAGqohJQwSnIyjEJDXhLqgSby6U8N9S/DN1RCCCHEATihEkIIIQ7ACZUQQghxAGqohBRzypTJ/e9eaqgkX/gJWw6zC4XVkdID31AJIYQQB+CESgghhDgAJ1RCCCHEAaihElLMkHGmZcuWzXV/Zmam0QZ1VWLgK+zKHvabw4q6qgf4hkoIIYQ4ACdUQgghxAE4oRJCCCEOwAmVEEIIcQA6JRFSzJBORz4+Prnul7YNOikRlBN2RWHLRA/JXrRJJyUNvqESQgghDsAJlRBCCHEATqiEEEKIA1BDJaSYIZPh+/lJcUvHltghKytLs73RULlweSknUNh1hZ0l7H2WNuSQkEPPJufL4XvOUqaUwDdUQgghxAE4oRJCCCEOwAmVEEIIcQBqqIQUIbYYUpkMv1w5PYDw8uXLHtuQOqw3eqinhcy90WW9iYklhUCAZVs1D3aasGWyfADwEfZ5YdtmFKmh+gtbaqoXLW3IGNpiCt9QCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEOQKckQooQX1/T88O2LScyWb4N6UAknYXkfsB0SpLOUd60IR2mSCEhX41qW8rIbdKnLEzY5u01HZfkDJJhqVNJ2DIpv3RSSre0cdqyrRjCN1RCCCHEATihEkIIIQ7ACZUQQghxAGqohBQgnhYDl0kbAFObPH9ej573pHXajiOTMNh0WE8JJeRxbXppsUmoLy/JpSLpRcEhh41M5CCTNgBmAoXdwpbJ86ta2pDyvtRZbUkZpIYaIWzZ9zOWNmztFkP4hkoIIYQ4ACdUQgghxAE4oRJCCCEOUOw11EqV9A/wderUMcoEBuof/2vX1gOutm3bptlDhw412vjwww81OykpSbNPnzYDoU6dOmXp8f+QmpMtbs8TtmTjxUancgB5fjZtT2p1Tpx/SEiIZteqVcsoExCgizvR0dGavXfvXs0eNGiQ0cann36q2UeOHNFs2xhKTU3VbLnAuDz/ixdNgclTcnzbdZZ1ZBmbVivJzxgvEOTpVbCUkT9pc532PCOlyxqWMrJrqcLeI5LJB10w2zgbJDbIWM71lgPL21df2CeEfQQmUu+UfZP9AExtNlTYlYWdbGnjd8u2YgjfUAkhhBAH4IRKCCGEOAAnVEIIIcQBvNZQvVk42JO2JTUZWxxbp06dNHvkyJGaHRMTY9SRGmpmpi6G7Nu3T7OrVjUDrH788UfNHjFihGZ37tzZqHP77bdr9tq1azXbGz1J5m2VfS9NeqkNT4taA55jKj3tB4CrrrpKswcMGKDZUh8FgPDwcM2W9+rYsWOaXb16daON3377TbPleO7Zs6dR58Ybb9TsTZs2abb83diuodR/PcWyAubv05OGatNh09Jkstciwps4VBlTKTRUKRfKME4AGCLsG4Vd3lJnjbB/FPZeoUuetS0WLiX/FGHfYqkjDyR1WHnrbHpomIcytjpSM5VtSOHZpncvs2wrhvANlRBCCHEATqiEEEKIA3BCJYQQQhyAEyohhBDiAC7lpdeLdGKwOTV4csKRh7r22muNMmPHjtXsXbt2afaGDRuMOtLxQwbGd+vWTbNbt25ttBEbG6vZ6en6Krc2ZyiZdCIhIUGzX331Vc1esmSJ0UZxoaicn2QCdlvygEuXdI8SOc6k3aBBA6ONgQMHavahQ4c0WzquAcD+/fs1+9w53S2la9eumt2qVSujDZmIJCMjI9f9ABAWFqbZBw8e1OzJkydr9rJlpseGNwkzJJ4SO0hsY0YmQLElnSgMXBWFE6VMLgCYi2FLryPdjwvNLU38W9ibhD3fUuercLFBJliQCSds3lCy7yHCFn0HYCadlx5TYcKWTkuA6cgl27A9RoI9HEdim0bEo1MlFU9nTb6hEkIIIQ7ACZUQQghxAE6ohBBCiAN4raF6k9ghr9g018qV9UzJJ0+edPy43iAD/f/5z38aZZo1a6bZMvD/7Nmzmj1/vqmoyGTpFStW1GzbdfekdXmziPX333+v2VKHLixk32x9lYkMpKYqh/Cvv/5qtNGhQwfNlnqoDU+JDOR19iZJvVy44cknnzTqNG3aVLODgnQx68wZXQz75JNPjDZk0n05rmzIBCkyOYRM0h8cLMUxc5GJ1atXezxuQeAKF78bW5Z6qSkeF7ZI9KAsSeprC/tQmOyI5bhVhC3rSOnalqReXnq5xoIlv4ZLbFNSy5XnZ1ssoLGwZcIMm/4pXRqihC2TVMTC5GndVBuooRJCCCGlFk6ohBBCiANwQiWEEEIcwOvk+DVr1tTsevXqGWVkjJ3UqaRmOnXqVKMNqdO0adNGs2WMHgD4++sZmaUOJ7WvFi1aGG1Uq6ZnaJZJvnfv3m3U+e677zR7z549mn348GHNtiVCb9u2ba7HlXohYOpyUuuT+23XzKYzFgVSU2zYsKFRRo4rGSMsteq5c+cabcgxUbduXc22XSO5TWqZsk1bfHOFCnqmb6lt2uJfV61apdkyHjYpKUmzu3TpYrTRpEkTzZb6ri2OXP72pIYqz79KFSkGAqGhMhN6ESHjMm0htbKrQv8LOaDb71qaEGuBo0mqbtuUvt+F3qmkhijjP+UC3ACQIGzpaiLbBKBkZ2sKWya2N0P+ESVcLfZLLTfKrGPouUeFLdcqkTG2tr4VU/iGSgghhDgAJ1RCCCHEATihEkIIIQ7ACZUQQghxAK8TO0jnCuksBJhOCtKRSTolHT0q1WmgRg1bBPb/kMkTANPhQjqpHDt2TLNlEnvbNplwoaAICdG9J6QTki1ZvEQmGPAmCYdcQKCokuOHh+vR5XFxcR7LSOeY8+f1TOCJiYlGG3IhA+moZktSIBMdZGbqke4pKSmabRtX0qFIOqrl57pLhyLb/fY0rmwJNDy1K22bY9Px43p2BHlvCgtXFXFNqnuu02iLbstlC8IsdaKFLXNF7LfU+ULYSjrlmEPRRN7yVGHb1iTwtD6CPK43r1uyjDmsTM8tWUf+BGxJ+fWfGtRuJnYghBBCSi2cUAkhhBAH4IRKCCGEOECRJscnxYei0lA9JaWwIZPly747dS6eNEVvtEyJp8XRvTmO1H9t52tr968i2/TmXkndubBwVRD3IsBSSOp9MsG87LolOX6+kEkn5GWUWqbnteGBs8K2rf0gtUypVcrj2nRYT2tKePOKJoerlNlt90r/yUMlUkMlhBBCSi2cUAkhhBAH4IRKCCGEOIDXyfEJKQikXmjTAz1ppIWl/8rjeKMpyvPLj4Yq8Ua7lTqzpzYAz+fnTbxzQWi3+UI+2WyXQ2qisoxTmqlEHkdeRqkp2hLDS11V9lVqqoB98e/cjmOG/APHhC1/euUtdaQWmy5sea9sbZhrhBRL+IZKCCGEOAAnVEIIIcQBOKESQgghDkANlZAr4EkP9CbuVGqVnmJKAcDfXxezZD9kHl654LrtODIHtu3cZN5dT1qtzA9crPAmdlPevsIKbbTpmzkJFLatXzJWU8aQVoBJQ2HLmNJwYf/X0oaMXY3w0CYA7BC27LuMBz5haaOEwDdUQgghxAE4oRJCCCEOwAmVEEIIcQBOqIQQQogD0CmJFCneOPbIhAOe6hRVoof8JKXwJjnChQu5ZxiQC6EDprPTxYt6dP25c6b3iOyLdH6STkjFesEM+WSzDQnpUyVfL2Rig8LK85/hRRl5frJvtltzWtj7hC2vUQtLG2HCPiRssUg7ANPpqIawTwrbG4eyYgrfUAkhhBAH4IRKCCGEOAAnVEIIIcQBuMA4AVB0C4xLnS4/C4xLzbGozsWGp4TytsQOEm+uiUReE6mhyoXdbXhayN3Wd091CgtXDfG8siV6l4+0VGHLJPXSLkqkbC6HSKgXbcgk9PJW2fKayKQUMll+JUsd2Te5kLtcLEAmqQCMhPrqYvH5jeeEb6iEEEKIA3BCJYQQQhyAEyohhBDiAIxDJUVKfhYLL04aqSfyE4fqqY287gdMvdOWHD+vi4N7WsS8SJGLWnvz6iDjUovJWulWZKyqPD8Z+wmYmrGMXZVtyGtoI0zY5joN3sXV5iTVsq2EuPDwDZUQQghxAE6ohBBCiANwQiWEEEIcgBMqIYQQ4gBM7EAAFJ2jjzeJDSR5dZ4hRUeRJXYIEs8r2zCTXbM51JRmPLmk2n5mxeSnV1wdE/mGSgghhDgAJ1RCCCHEATihEkIIIQ7AxA6kWFFctRFSwpAuHzJpA1Bs9MAiw1NeDv4U8wzfUAkhhBAH4IRKCCGEOAAnVEIIIcQBqKGSIoUxpaRAkInfvUn0/neDGqnj8A2VEEIIcQBOqIQQQogDcEIlhBBCHIAaKiGk9GGLOyWkgOEbKiGEEOIAnFAJIYQQB+CESgghhDgAJ1RCCCHEAeiURAgpfTBpASkC+IZKCCGEOAAnVEIIIcQBOKESQgghDuBSXNGZEEII+cvwDZUQQghxAE6ohBBCiANwQiWEEEIcgBMqIYQQ4gCcUAkhhBAH4IRKCCGEOAAnVEIIIcQBOKESQgghDvC3nFBdLhdGjhzpsdycOXPgcrmwf//+gu8UKZG4XC6MGzfObXPMFF8GDhyIqKgobVt6ejqGDBmCatWqweVyYdSoUUXSt+JM9phev359UXel2FPqJtStW7eiT58+iIyMhL+/PyIiInDTTTdh+vTpBX7sCRMm4PPPPy/w45D8k/1wyP7n7++PevXqYeTIkTh27FhRd4/8RZKSkjBu3Dhs2rTJq/ITJkzAnDlzMHz4cMydOxf33Xdfno+5Y8cO3HzzzQgODkbFihVx3333ISUlxev6S5YswbXXXgt/f3/Url0bY8eOxaVLl6xlv/32W3Tq1AmhoaEoX748mjdvjvnz5+e5zyWJvFyf3Pjoo4/gcrkQHBxs7HvnnXcQFxeHqlWrws/PD9HR0Rg0aFCe/zAuVcu3/fzzz+jYsSNq166NoUOHolq1ajh06BDWrl2LadOm4aGHHspTe/fddx/69u0LPz8/r8pPmDABffr0Qc+ePfPRe1KYPP/884iOjsb58+exevVqzJgxA8uXL8e2bdsQGBhY1N0j+SQpKQnjx49HVFQUmjVrpu175513kJWVpW37/vvv0bp1a4wdOzZfxzt8+DDat2+P0NBQTJgwAenp6Zg0aRK2bt2KdevWwdfXN9f6K1asQM+ePdGhQwdMnz4dW7duxYsvvojk5GTMmDFDKzt79mzcf//9uOmmmzBhwgT4+Phg165dOHToUL76XhLIy/XJjfT0dIwePRpBQUHW/Rs3bkR0dDRuu+02VKhQAQkJCXjnnXewbNkybN68GTVq1PDuQKoU0a1bNxUeHq5OnTpl7Dt27Jj7/wDUiBEjHDlmVlaWysjIUEopFRQUpAYMGOBIu6RgmD17tgKgfv31V237Y489pgCoefPm5ak9AGrs2LFG+wkJCQ701nnS09OLugsFwsWLF9WFCxfUr7/+qgCo2bNne1UvOjpade/ePd/HHT58uAoICFAHDhxwb/vmm28UADVz5kyP9Rs1aqSuvvpqdfHiRfe2p59+WrlcLrVjxw73toSEBBUQEKAefvjhfPc1v1zpN1MYeHt9PPHkk0+q+vXrq379+qmgoCCv6qxfv14BUC+//LLXxylVn3z37t2Lxo0bIywszNhXpUoVY9vnn3+OJk2awM/PD40bN8ZXX32l7bfpYVFRUejRowdWrlyJ6667DgEBAZg5cyZcLhfOnj2L999/3/05ceDAgQ6fISkoOnXqBABISEhAhw4d0KFDB6OMTYPzlrfeeguNGzeGn58fatSogREjRiA1NdW9f+TIkQgODkZGRoZR9+6770a1atVw+fJl97YVK1agXbt2CAoKQvny5dG9e3ds377d6G9wcDD27t2Lbt26oXz58ujXr1+++u8EiYmJuP/++1GjRg33Z7Xhw4cjMzPTXSY1NRWjRo1CrVq14Ofnh9jYWLzyyivam+X+/fvhcrkwadIkTJ06FTExMfDz88Nbb72FFi1aAAAGDRrk/h3OmTMHgH7/fvjhB7hcLiQkJODLL790l92/fz9Onz6NnTt34vTp0x7P6bPPPkOPHj1Qu3Zt97bOnTujXr16+PTTT3Ot+/vvv+P3339HfHw8ypb938fCBx98EEopLFy40L3t7bffxuXLl/H8888D+PONSzmwrsnGjRtxyy23ICQkBMHBwbjxxhuxdu1aa9mMjAwMGzYMlSpVQkhICPr3749Tp05pZdavX4+uXbuicuXKCAgIQHR0NAYPHqyVOXLkCHbu3ImLFy/m2re8XJ/c2LNnD6ZMmYLXXntNa8cT2WMl5+/UE6VqQo2MjMRvv/2Gbdu2eSy7evVqPPjgg+jbty9effVVnD9/Hr1798aJEyc81t21axfuvvtu3HTTTZg2bRqaNWuGuXPnws/PD+3atcPcuXMxd+5cDBs2zInTIoXA3r17AQCVKlVyvO1x48ZhxIgRqFGjBiZPnozevXtj5syZ6NKli/uhctddd+Hs2bP48ssvtboZGRlYunQp+vTpAx8fHwDA3Llz0b17dwQHB+OVV17Bs88+i99//x1t27Y1NJ9Lly6ha9euqFKlCiZNmoTevXs7fn7ekJSUhJYtW+KTTz7BXXfdhddffx333Xcf/vOf/7j/iMjIyEBcXBw+/PBD9O/fH6+//jpuuOEGjBkzBo899pjR5uzZszF9+nTEx8dj8uTJ6NWrl3vCiY+Pd/8O27dvb9Rt2LAh5s6di8qVK7t/v3PnzkV4eDgWL16Mhg0bYvHixbmeU2JiIpKTk3HdddcZ+1q2bImNGzfmWj97v6xfo0YN1KxZU6v/7bffokGDBli+fDlq1qyJ8uXLo1KlSnj22WeNz9jesn37drRr1w6bN2/G6NGj8eyzz7r/oPzll1+M8iNHjsSOHTswbtw49O/fHx999BF69uzpntiTk5PRpUsX7N+/H0899RSmT5+Ofv36GRP0mDFj0LBhQyQmJjp2fXJj1KhR6NixI7p16+ax7IkTJ5CcnIz169dj0KBBAIAbb7zRq+MAKF2ffL/++mvl4+OjfHx81PXXX69Gjx6tVq5cqTIzM7VyAJSvr6/6448/3Ns2b96sAKjp06e7t9k+30VGRioA6quvvjKOz0++xZ/se/rtt9+qlJQUdejQIfXJJ5+oSpUqqYCAAHX48GEVFxen4uLijLoDBgxQkZGR2jZ4+OSbkCtljgAAon5JREFUnJysfH19VZcuXdTly5fd5d544w0FQL333ntKqT+lg4iICNW7d2+t/U8//VQBUD/++KNSSqkzZ86osLAwNXToUK3c0aNHVWhoqLZ9wIABCoB66qmn8nqZHKd///6qTJky1s+GWVlZSimlXnjhBRUUFKR2796t7X/qqaeUj4+POnjwoFLqz8+fAFRISIhKTk7Wyub2ydd2/yIjI41Pvtn30NNn4+xjffDBB8a+J554QgFQ58+fv2L9iRMnKgDu88pJixYtVOvWrd12SEiIqlChgvLz81PPPvusWrhwobrnnnv+0v3t2bOn8vX1VXv37nVvS0pKUuXLl1ft27d3b8u+Hs2bN9eepa+++qoCoL744gullFKLFy/26tNw9rj0JIvk5fpciWXLlqmyZcuq7du3u4+d2ydfPz8/BUABUJUqVVKvv/66x2PkpFS9od50001Ys2YNbrvtNmzevBmvvvoqunbtioiICCxZskQr27lzZ8TExLjtq666CiEhIdi3b5/H40RHR6Nr166O958UHp07d0Z4eDhq1aqFvn37Ijg4GIsXL0ZERISjx/n222+RmZmJUaNGoUyZ//3chg4dipCQEPcbqcvlwh133IHly5cjPT3dXW7+/PmIiIhA27ZtAQDffPMNUlNTcffdd+P48ePufz4+PmjVqhVWrVpl9GH48OGOnlNeycrKwueff45bb73V+jbncrkAAAsWLEC7du1QoUIF7dw6d+6My5cv48cff9Tq9e7dG+Hh4Y73d+DAgVBKeZRszp07BwBWp0V/f3+tTH7q56ybnp6OU6dOYfz48Xj++efRu3dvfPTRR7j55psxbdo0nDlzxuN55eTy5cv4+uuv0bNnT9SpU8e9vXr16rjnnnuwevVqpKWlaXXi4+NRrlw5tz18+HCULVsWy5cvBwC31LZs2bJcP+fOmTMHSimP8klero+NzMxMPProo3jggQfQqFGjXMtms2LFCixfvhyTJ09G7dq1cfbsWa/qZVOqvHwBoEWLFli0aBEyMzOxefNmLF68GFOmTEGfPn2wadMm94XNqXlkU6FCBUMTsBEdHe14v0nh8uabb6JevXooW7Ysqlativr162sTnlMcOHAAAFC/fn1tu6+vL+rUqePeD/z52Xfq1KlYsmQJ7rnnHqSnp2P58uUYNmyYe9LZs2cPgP9pvpKQkBDNLlu2LGrWrOnY+eSHlJQUpKWloUmTJrmW27NnD7Zs2XLFSTI5OVmzi/p3GBAQAAC4cOGCse/8+fNamfzUz1k3ICAAZ8+exd13362Vu/vuu/HVV19h48aN1k/bVyIlJQUZGRnGuAT+/ByelZWFQ4cOoXHjxu7tdevW1coFBwejevXqbpkhLi4OvXv3xvjx4zFlyhR06NABPXv2xD333ON1pERO8nJ9bEyZMgXHjx/H+PHjvT5mx44dAQC33HILbr/9djRp0gTBwcFe5S0ASuGEmo2vry9atGiBFi1aoF69ehg0aBAWLFjgdo/P1qMkyguh39ONJMWfli1bWt+WgD/fmGzjIKdTUEHQunVrREVF4dNPP8U999yDpUuX4ty5c7jrrrvcZbL1srlz56JatWpGG9Lpws/Pr0D+UCgIsrKycNNNN2H06NHW/fXq1dPsov4dVq9eHcCfTjaSI0eOoGLFirlOJDnr16pVy6jfsmVLt12jRg3s2bMHVatW1cplO1t68yJQ0LhcLixcuBBr167F0qVLsXLlSgwePBiTJ0/G2rVrrfGfuZGX6yM5ffo0XnzxRTz44INIS0tzv21nO3Pt378fgYGBVmfVbGJiYnDNNdfgo48+4oSak+wHp23gO0n2WwQp2VSoUMH66T/n26S3REZGAvjTkS3np7XMzEwkJCSgc+fOWvk777wT06ZNQ1paGubPn4+oqCi0bt3avT9bpqhSpYpRt7gSHh6OkJAQj86CMTExSE9P/0vnVZi/wYiICISHh1szCK1bt86Ig5Vk71+/fr02OSQlJeHw4cOIj493b2vevDn27NmDxMREbRwlJSUBQJ4/fYeHhyMwMBC7du0y9u3cuRNlypQxJrE9e/a43+CAPyenI0eOGM4+rVu3RuvWrfHSSy9h3rx56NevHz755BMMGTIkT33My/WRnDp1Cunp6Xj11Vfx6quvGvujo6Nx++23e0zEc+7cOesb8pUoGX+6esmqVausbxbZ3/htnzecJCgoKE8u1qR4EhMTg507d2rZbjZv3oyffvopz2117twZvr6+eP3117Wx+e677+L06dPo3r27Vv6uu+7ChQsX8P777+Orr77CnXfeqe3v2rUrQkJCMGHCBKtOlZcMPYVFmTJl0LNnTyxdutQ6+WRflzvvvBNr1qzBypUrjTKpqaleZcfJDtz/K7/DvITN9O7dG8uWLdOSK3z33XfYvXs37rjjDve2ixcvYufOndof9Y0bN0aDBg0wa9Ys7evHjBkz4HK50KdPH/e27K8U7777rntbVlYWZs+ejYoVK6J58+Z5OkcfHx906dIFX3zxheYZfuzYMcybNw9t27Y15INZs2ZpY27GjBm4dOkSbrnlFgB/TmLy+Zs9KeaclLwNm8nL9ZH3rEqVKli8eLHxr2PHjvD398fixYsxZswYAH96wtve8NetW4etW7de8UuWlTy5MBVzGjdurKKjo9Vjjz2mZs2apd544w11zz33KB8fHxUVFeVO+IArJHaIjIzUvHSv5OV7pUDwbt26qaCgIDV58mT18ccfq7Vr1zp5esQBvAlS//3331WZMmXUNddco9544w313HPPqSpVqqimTZvm2ctXKaXGjh2rAKguXbqoN954Qz300EPKx8dHtWjRwvBAV0qp2NhYVb58eQVA/fbbb8b+jz76SJUpU0Y1adJEvfjii2rmzJnq6aefVs2aNdPGtSePxsLk8OHDqlq1aiowMFCNGjVKzZw5U40bN041btzY/bs8e/asuvbaa1XZsmXVkCFD1IwZM9SkSZPc55GSkqKU+p+X78SJE43jZGZmqrCwMFW/fn3173//W3388cdq3759SinnvXyVUurgwYOqUqVKKiYmRr3++utqwoQJqkKFCqpp06aah292n2UUwNKlS5XL5VKdOnVSs2bNUg8//LAqU6aM4cWdlZWlbrzxRuVyuVR8fLx688031U033WRNIOGtF+22bdtUUFCQioiIUC+99JJ65ZVXVJ06dZSfn5/27Mq+Hk2bNlXt2rVT06dPVyNHjlRlypRRbdu2dXtpT5kyRdWtW1eNHj1azZw5U02aNEnVr19fhYSEuO9BXvqXl+vj7T2z/SZOnTqlgoKC1ODBg9XkyZPV22+/rUaMGKECAwNVxYoVDa/z3ChVE+qKFSvU4MGDVYMGDVRwcLDy9fVVsbGx6qGHHvIqU9JfnVB37typ2rdvrwICAqw/HlL0eJv15cMPP1R16tRRvr6+qlmzZmrlypX5CpvJ5o033lANGjRQ5cqVU1WrVlXDhw+3ZvRS6s9MMABUbGzsFfu3atUq1bVrVxUaGqr8/f1VTEyMGjhwoFq/fr27THGaUJVS6sCBA6p///4qPDxc+fn5qTp16qgRI0aoCxcuuMucOXNGjRkzRsXGxipfX19VuXJl1aZNGzVp0iT3Hx+5TahKKfXFF1+oRo0aqbJly2oP2YKYUJX6c2Lq0qWLCgwMVGFhYapfv37q6NGjWpkrTahK/Rlu0qxZM+Xn56dq1qypnnnmGesfWmfOnFGPPPKIqlatmvL19VVNmzZVH374oVGud+/eKiAg4IrjKycbNmxQXbt2VcHBwSowMFB17NhR/fzzz1qZ7Ovxn//8R8XHx6sKFSqo4OBg1a9fP3XixAmtrbvvvlvVrl1b+fn5qSpVqqgePXpoY1KpvE2o3l6fvzKhXrhwQT3yyCPqqquuUiEhIapcuXIqMjJS3X///XnOeOZSyoF0G4QQQooFVatWRf/+/TFx4sSi7srfDk6ohBBSSti+fTuuv/567Nu3D5UrVy7q7vzt4IRKCCGEOECp8vIlhBBCigpOqIQQQogDcEIlhBBCHIATKiGEEOIAnFAJIYQQB/A6l29+cmTKpNxyIVxv2nTCCfn666/X7MDAQKOMr6+vZl8peX5OZOJrmfZNLjdVnCkqZ+/ikv/YlkBejgmJTM5tS9Yur6s8jkxmD/wvfV42ctH7H374Iddj2LZ5sguKkjSuagn7kLBD4Jk0uaGupdBQD5UShH3UbCLqO92uLvavsT2+5IqTMqrmpLDlBQAAmS3wuLCTUSgU1+AUvqESQgghDsAJlRBCCHEArxM75OcTSn7qeOpO+fLljW1yseVrrrlGs7NXQ8jGtmSRPK5cu69SpUpGnePH9e8d8pOf/Gy8bNkyo40lS5Zo9sGDB40yhUFJ+jTnBPLTq1xZA4CxLJVcdUKOu+3btxttnDlzRrPlGLEt/p2enq7ZcszLT9FyDAEwlqXavXu3Ztuue0GMgZI0rrz5pCsxPvFGCtu23OYLwr5a2BOEvcZs4hWxaE8zsf8Ry2F33iU2tBK2XP/9sKWRRGE/K2xbcib5WVgqKVIpyYKJ/jPiJ19CCCGkNMMJlRBCCHEATqiEEEKIA3BCJYQQQhygQJ2SPLXhzaHj4+M1u25dM7BLOv9IpyPpYHT11dILADh//rxmy1hA6SgCAGlpuktCRkaGZoeHh3tsIzo6Otc2xowZY9RJSkoytv1VSpLziBMMHjxYs+vVq2eUkc5Ae/fu1Wx/f3+PbZw8qQf3Sack23WXY0DGb8tluc6ePWu0UauWHlV5+vRpzR49erRR59ixY8a2nOQnbrwkjyvppGQ4IFm4RtiZljLb/yE2tBH2Kt2sMt1s4wNhS1+oOyzH3VZNbJBDQHbWDKsG1gn7U92MlnGqABKCxAZZRu4vZzmuiG+lUxIhhBBSiuGESgghhDgAJ1RCCCHEAQo1sYM3h3rwwQc1u2LFipqdmppq1Ll4Uf8oLzVVGVwvc/ACQM+ePTX76FE9gea5c+eMOnLbr7/+qtk333yzZtsC/2Ve4dq1a2u2Lafw/fffb2z7q5Rkrcsb+vfvr9mhoaGafeHCBaOOzLNbrpwu7khN3JaXt127dpqdnKyLQZcvXzbqyPEsx41MKLFjxw6jDTmuqlTRMwzY+vrAAw8Y23Ii75Xt3km9tySNq/xopl8JO0rY4y11Pr5BbJACqPzJ/2G2kSaSPcgcDG9bjvuzsNcPExveE3Z9SyPiZ9J3j24fsVT5j2WbRoSwbRqqkPdVBjVUQgghpNTCCZUQQghxAE6ohBBCiAN4vR5qfvCkocpYOcBMFp6QoC8OKGNKbci4vKpVq2q2jCcEgH379mm2jHeVa1ICwB9/6OKG1MtkvKiMW7Rtk7pstWoyeAy47777NHvu3LmanR/tuiThaZ1d2zWT2vSBAwc027bogjyOvDdyXO3ZIwQlmIsdREVFabYtNnnLli2a3bp1a82W8aLerO+bmakHGVaoUMGoM3DgQM2eM2eOUSYnpW1cpUnXCqEXdoOJfJJ8I2ybHIifhB0lbBn/GWY28a2wewm7keWwK+SGpcK+TthexKGuFbsrwkJLYf8mbLkOq7kOiT2gtxjCN1RCCCHEATihEkIIIQ7ACZUQQghxgALVUKW2JYmNjTW2ybg8GS9n05xkXKmM3ZR1wsLCjDa++kqPKGvbtq1m2+JQZd+kLbUumR8YMBe2ltqXLT6yWbNmmi011NKmbUnk+UkdunHjxh7ryJy6tnHlSa+X+XFtWuYPP/yg2c8995xm2xaUz+u4svVTjiv5m7h06ZJRRy6g/v7772u21OY9/b5LHGHCflg3l79jVqm/X7e/EPtlyCkASM+RQ1JT1VOAo9KvMHhZ2DK7907LcY2nwnlhy/hXc4gY2+QTbaulCtoKWwbNSqFZaqoAYIZrF0v4hkoIIYQ4ACdUQgghxAE4oRJCCCEOwAmVEEIIcYACdUryhM15RC70LR2ObEmv5YLMMiBfOjpJhw0AOHJET+v89ddfa7bNiUO2KxNGyL7KRACA6XBiS/4gadlSRkr/vfCU2KFRIzOsXd4r2wIJEjkWpWOPTGJfqZIZkX7o0CHN/vHHH3NtAzAdqGTSEYlcyN7WV5tDnKRVq1a5tmFL5F+qqC5smZT+lFllibDlG4qZQgY4JJ1wzghbZOU/0QoGN/yi2y+K/bacDIlyQ2VhH7dUEvgIRya53Ift6XVRDr1mwt4obHk9ShB8QyWEEEIcgBMqIYQQ4gCcUAkhhBAHKFINNSJCrizr3WLgEk/JwqVOadOtpJ67daseoiwXOgfM5Pc1atTQbJlAwqahSu1W9kMuDgCYifo9JUIvbUjNVGqqtuT4nsaVLRmGvL8ygYJccFzeBwBo0aKFZm/YsEGzbWNCHrd6dV3ck4nt5eLhAJCYqCtmDRs21GxbQomUlBTNltdILjpR6jgqbKHl1TwNAyk71jaLGAwUj58DYt0N+ev9SfYLwJKOuj18lW7PtxxXLocQsFu3M8T+5FCzDSmHyrXRrYkdZP9lR7xZyb2EwDdUQgghxAE4oRJCCCEOwAmVEEIIcYBC1VBtepFE6p9SL5LaJmBqojJ+TmKLp5NJ6OVxbfqYjDOVmprU8myJ7qVOZUvcL5Ga4VVXXaXZ69ev99hGScab+F6JjMOUC4rLRb0B837JeyPvg+3+SmRfbXHHUs+V40pqqraFG2Sd0FBdELNpxvJ8rr76as3++eefjTqlChmXKcRM25ITMjq9hrBtHiB1hS1jVaXXRPUDZhtHknX7A7H/rOUR2Ew89qQnidSDgyyasVTrZUS/Ldr5rJxlZJBsKVpjgW+ohBBCiANwQiWEEEIcgBMqIYQQ4gCcUAkhhBAHKFSnpDp16mi2LVBcOulIZxKbM4VMuiAdMrxJOO8pob7tuDKgXpaR5yL7BQABAbpC701iC5moPzo6WrNLu1OSTOwgz19eQ8C8jnJMyDYB8/7K+ycdm2xOSdKBSo4z26ILMkGI7JscM7ZxJc9P/tZkG4DZ/6ioKM1es2aNZtt+E8UG+argjeOLzHUh8s5Ew0QmYbhK2MJ3CADwvbBlXoMkscZCb5H4AQB+Fn5oR8Q6I1Eyaz2ATcJR6XrhpJQuctcEnDTbkE5Ie4R91sx/A/wq7PrClkPR9LErMfANlRBCCHEATqiEEEKIA3BCJYQQQhygUDXUWrVqabZcwBkwNSZPbQBmom+ZHF4merAlfpAak0wWUbu2mfbakx4mNSmZpB8wg/TlYum2RP5yW7169Ywyfyc8XUPAvOdS27SNK7lwQXp6eq5t2rTM48f1cHk5Nm33TpaR5yN/N7bfjKffmi25idSe69aVKQhKEDLDgDeLVksJfLVu2hLfrxW21Ext0u3vwu4t7DJCM7Wl0xghbD+hmU6z1Ckvbnms2L9GaJc2KXODS2yQ19l2kWTGiGBhmz+bEgvfUAkhhBAH4IRKCCGEOAAnVEIIIcQBClVD9RRfBwBpaXpUlowfDAmRkVBmO1KrlHqRTUOVbcjj2upIzUkm1Je6lS32T55v5cp6hu7Tp80M1VL/k0nM/27Ia2aL7ZT3St4Lee8Ac5FuGdvpTRymHHvyuDb9U+qu4eHhmi21XFuscmpqqmbLmFpbDLjsq1zsXo67Yh2Hmh+EhtpL2KbKbsishlyYAhN5xzcKW+bCty31IaVLmWA/zFLn/4T9k7CbC9HUkpMfl8UtPyXdYG62VPpa2D8IW0r1xyxtlBD4hkoIIYQ4ACdUQgghxAE4oRJCCCEOUKgaanCwHoAk4+0A4NSpU5ot4z+XLFnisV2p7ci4TZvm5Cnvrk2Xk1qtbEPqsra42127dmn2rbfemmsbgGddriSRH11O1pH337bgttwWEaEnarWNK6nXSx1d3k/bIvQyF7XUYW1xxrKMbEOev+18t2/XAxN799ajHW3XWf4ePR23WGMTHj0RppvlUnXblhH8oLgkfcRltYW/isMYGmobYcsFxwHgFw92KEzWCPs38fQPFo84uVg6AEhvjQVyyNseRXJbHWHLuNQSDN9QCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEOUKhOSdJpx+ZMIZ1/pCPE77/L1NJAu3btNFsGvktsjj5hYWGaLZ2jbHVkXz313cbu3bs1OzAw0GMbMul+aKjNBaFk4s01k2WkU5ZtoW95b6TTmXQOA4COHTtqtkyy4SnhPmAmVDh50rJqs4e+yvOR52sbm3v36qH+0nHLllBCOiXJBdRtCfWLLdJZJsyLOvqtwr5U3TZHCAznp2+FY89RS5VkscC2SzQs1wY/YnGw2iu2BQj/TpszlFwgPVL0NQy52wCwU26Q2S4qyQIw74XMfpFkqVNC4RsqIYQQ4gCcUAkhhBAH4IRKCCGEOECBaqgy8YHUrWwJ56UOJQPfk5LMD+6edDepS9qSNMgyJ07oq/zaAuE9JZCQ/bKd7x9//JFrP2xal7yuMgBf6mWeNOXihDcaqhxHnpJy2NqV9842riTy/snrbtNuZRmZ+N52vrJvsl1Zx7Zw/Z49e3Lthw153eRYlG3YEuwXG2QWBtvpy21C65M52s2nBgDxWNgihl5lM28HoLtnQIlEB0ekS4TMfA8Y53dZrGx+3MxdgxpieEpNVXq0mMtyWCaMisK2ZdTX13aAn74eiLEIu+2SlRT4hkoIIYQ4ACdUQgghxAE4oRJCCCEOUKAaqlz42ZtE6FKnkrFxNr1IbpMaqUxabtMUZUys1JNkwnLA1ExlnJ48X1scn9TuvIn1k0nZ5XWsVq2aZkudtjgh++6NhirHldSZbW3IMSLvnW1cyXEj743cLxf1BoCMjAzNluPItrCBjCuVtjxf2+/o2LFjHstIpFYrj1O9enXNLs7jCkJTRFVLGfk6IVwcDsnytoT7Mu5SCIDlhF4KwEwOL4erOE4ZoTkCQJZYZyOzgShgqbNfuAnIJ1qGsG3rfBsLpkcK23RfMK7RhcZi/2Fh28RbW7vFEL6hEkIIIQ7ACZUQQghxAE6ohBBCiANwQiWEEEIcoECdkmTCeen4IZ1rbHUOHdJdA86cMdM+y4Bz6ZAhj2tLliAdTrxxHpF1PCVgl8nGATMJQ3Ky7k1hS3wuHbfk+ciE7MXaeURgcyiS2+RiAPI62xIsyHF18OBBzbaNK3lv5LiS90E6KQHmGJHjyFZH3nPZhhzPtsURQkJCNFv23eb8JseRPL8SNa7kky3CUiZY2DKTvXSEqQ7P6PlgZN6HPwkRtvSRFJ4/WddY2tgnbDGMQi15Sk6LMqdFQn09jQeQYj6uALlN9t22GoB0kJJJJ8xpwMR8DBZL+IZKCCGEOAAnVEIIIcQBOKESQgghDlCgGqoMJpcJFWxaV7169TRbLvxsS8pgS3afE6kF2ZKne0pIblsMXeqs8jiyzQoVKhhtyATjW7du1Wyb7upp8XOp/ZUkbNqep2QP8hra7lVsbKxmy4XqZQIGwEz+IMeNtG16qESOK9tvQCall8eRWqdtXMnfyebNmzVbasqAmbhfjl/bWCy2yMfEz5Yy8rLJxbLl/oMwkLkeZH4FuVg4ADMLfRdhrxW27bUnUdjikXbathiAyIa/e5tuG6lrbLql0Ijxu7DN/DdAgrBlMgzpAiCTcgBACVnbnm+ohBBCiANwQiWEEEIcgBMqIYQQ4gAFqqFWqqR/LPcUkweYMXVbtmzR7PBwsVotTM1Qaj8ybk8uSA2YGprUZW3JxWX/pbYlNThbTGnt2rU1e98+PcDs+uuv93jcnTt3araMQSxtVKyor2osr7PUIAFT/zt58qRmezOupJYr77dNQ5WLO8hxZNOM5fjMz7iqVUsXBHfv3q3ZcXFxRh153Xbs2KHZJWpcyZ+4KVUD8vEjyvgJLe+CJUF7A5EM31DvzaFo6rs1hS21Wqk5AoB8LIgyEb+ZVRJ1dxTj9OVkcE7EqQJAoDhfPxEPe6q+WceIu5XJ7z2v21Bi4BsqIYQQ4gCcUAkhhBAH4IRKCCGEOECBaqjXXnutZsu4Tdui3VWr6isBy5jL6667zqgj4w6lpiR1KxkvCnheyNyW/1e24ynG0BYve/XVV2t2Wpqe+NIWUyk1VJnLuHnz5pq9cOFCo43igjeLzsttV111lWZL7VLmnAXMcXX6tC7k2MaVvH+eFkO3jSupd8pxZBtXcpscm7Jfcj9gXiN5vjJ2FzDjXeU4a9asmWYvWLDAaKPYILVLm4YqYiori/y3ck3y/UI/BMw3EiNU1ZanVuqMYcKuLGxbPGgjYW/UTUtXUV5sPCNE1ADxqKlgaUTqrjLi/ZSMSwWAk8IWWnQNsT/JFkZvph8olvANlRBCCHEATqiEEEKIA3BCJYQQQhyAEyohhBDiAAXqlCQdH6QTUkSEueqvDMCXSb2lEw8ApKamarYtsD8ntmTrMpheOpjYgudlAnLpHCKdY2xtREZGavbSpUs1+9///rdR59NPP9VseZ2PHrWt8ls8sTkhSeT9kkk4pPNM9ermStDScWvbNj0zeNOmTY06clzZEoLkxOZgJB195PlKpyXAdESTTkgyGYQtOYRMGCLH1ezZs406clzJRdflIuXFGunLZ3skiG2nhOOSvJsNLU3InAtbpcPRAUsl6SC1Q9je5M+Qa7uv0c0mlirfR4oN4nHkOqTbtqUQpBupMfJOyQ0wPKR89GFl+huVEAckG3xDJYQQQhyAEyohhBDiAJxQCSGEEAdwKW9ELHhe5Dk/2BbCrlOnjmZLreuJJ54w6sjkD1Lrkkm9ExPl6rxA5cp6NLVMFmDTZZOSkoxtOZHJBGwJB6Kj9VV/Bw8erNm2oH2p3Z4/b4sezxteDgPH8WZceUr+ILVLqZcCpqYoE78/9thjRh15neUYkOPKpjHKvshzsSU3kQt9S+S4siX2l7+jgQMHarYtyYjUpuW4ys8YKTbjygsN1dA25c/V8jOLFI+SA+J2xljq7G0sNlwjbKEx4mazDTyum7fot87IDQEAHwpbnr7UQyvC5IiwY4Ut1xIHgEsyQ4Z0GxB9tybDEBTVuPIE31AJIYQQB+CESgghhDgAJ1RCCCHEAQo0DtUTUqMCzAXFZVyqXFwaMBeLlrF/Utuy6aGyXanB2LRMGVcqtVtbHYnsi0xAvnz5co9tlHbkvfCku9rG1fbt2zVbxq7Khe0Bc6ECGZssx51sE7D7CeTEFpss9SG5UIMcV7brIY8rF6pYuXKlx+MWV50qX9iGTDVhy5+r1FQtrx8HxLZ2Qv+zaZl7pQuHXLj8IWGLRbwBoLfQHeVT8QfLcZXoa4QYejK01RYOqsJE11J1+7LuqvAnUhOVyfJLEXxDJYQQQhyAEyohhBDiAJxQCSGEEAfghEoIIYQ4QKE6JUnnCVsycZnou23btpptSyYukQHq8jgy6B0A9u/fn2ubMpje1q4M0pf9kEnPATPJRLt27TTb5pTkKdFBScabRA82R568tnHddddpti3RgbyunpyBbGPEU/IPmzOUp3El+2FL7HH48GHNluPqm2++MerI87Ul3fdEQSSAyRfS0UfagJlAQSSylznqfWAic8FLf6K5ljoyKT3ihC0eEzEvmU18JpNBiMvecYNZZ4942pcVTlhZzXU7TfcP/RMPCwhcrmupI52wPDklmT9FcxWCYgrfUAkhhBAH4IRKCCGEOAAnVEIIIcQBClVDzY9GU7++vmKvDLYHzET2st26dfUP+wcOmKv+ykW6a9Soodm2xaU9JTr3JjmE3Fatmow2N5HXsTRrqjZkggV5v705/yZN9CWYbckgZKIGqd1GRUVp9pEjMnW4qZvLRPa25PhSQ5X9kH4EtnEly8hxZbtG8jqW6HHl2dXCzA7fUjfT1uX9sMuEbZMh0UDYMqO8vhY89o60tHFU2Ct0U+abB2Akskg8KPZvFbbtdos8JVnSLUQmwwDM85P5T+S9sr3m+Vq2FUP4hkoIIYQ4ACdUQgghxAE4oRJCCCEOUKTJ8aUWBpg6jlwYWuqlAPDHH3paZ6l17d69W7NlUnMAaNSoUa5tyIT7tr5KHe706dOabeu71GZlsnybdnvhgi5UlGitS2Dru6fzkedvG1cyzlTeb1tie5lQX2qVO3fu1GzbuIqN1Zdglm3IRcoBU3eV40bGN9sWe5DJ8eX52caijGeVWq78TZSocZZq2SaFRilFy3XbbfGRIhD1g1vFfhkvCgCzhC3l+0PCftts4k7RFxn9a3tTChKa6VpZQMbD2tb2ECuKXz4t9ttEYxlDelbYcv2I45Y2PK8zUizgGyohhBDiAJxQCSGEEAfghEoIIYQ4gEt5KYQURI5OWy5fqdNI7eeJJ54w6rRp00azw8LCNDshQQ+EsuVtlfGAKSkpml2hQgWjjoxdlYuUy9yuUlMFgOPHdcHgnXfe0ez//ve/Rp2CoKj0sKIaV/J+P/fcc0ad66+/XrPlYvdSY7XlmZZ67qlTuugmxypgaqQyhlTGSNtyREs99+23dSHuhx9+MOrkdYFxb8ZMaRpXRvwkYObllXGY4y11ZA7h33Wzp0jfbT55gB7C/k3YYZY6UppdIOyjVcSGwZZGIoS9U9i/WupITVQOV/k4TrW0IW6nulA89Xu+oRJCCCEOwAmVEEIIcQBOqIQQQogDcEIlhBBCHKBInZIKCpkMQgbx2xaClgH2NscWiXRCkfbBg3ok9U8//WS0YUvKXhSUJucRb9qU99e2UINsR46revXqaXaVKtKrAwgKCsq1TVtfpdOcLCMXD1+zZo3RxpkzuueLdMqyje/8LCjuiWI9rmT+D3n60gnJ5pQUJOzqwpYJ5wGgorDF+vCNTuh2mKWJq5F7GdEEAEC6RM6X519f2LVhIh2qZIL9ypY6G4Ut85DI625b2EAMI5VFpyRCCCGk1MIJlRBCCHEATqiEEEKIA3itoRJCCCHkyvANlRBCCHEATqiEEEKIA3BCJYQQQhyAEyohhBDiAJxQCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEOwAk1H+zfvx8ulwuTJk0q6q6QUsicOXPgcrmwf//+PNcdOHAgoqKiHO9TScd2XdLT0zFkyBBUq1YNLpcLo0aNKpK+FWd++OEHuFwuLFy4sKi7UiIothPq1q1b0adPH0RGRsLf3x8RERG46aabMH369KLuGimFcLyVfJKSkjBu3Dhs2rTJq/ITJkzAnDlzMHz4cMydOxf33Xdfno+5Y8cO3HzzzQgODkbFihVx3333ISUlxWO9EydOYOLEiWjfvj3Cw8MRFhaG1q1bY/78+UbZ7EnN9m/t2rV57nNJ4euvv8b999+PJk2awMfHJ19/KC5ZsgTXXnst/P39Ubt2bYwdO9ZYzalDhw5XvL7lypXL0/HK5rmHhcDPP/+Mjh07onbt2hg6dCiqVauGQ4cOYe3atZg2bRoeeuihou4iKUVwvJUOkpKSMH78eERFRaFZs2bavnfeecdYwu77779H69atMXbs2Hwd7/Dhw2jfvj1CQ0MxYcIEpKenY9KkSdi6dSvWrVsHX1/fK9Zds2YNnn76aXTr1g3PPPMMypYti88++wx9+/bF77//jvHjxxt1Hn74YbRo0ULbFhsbm6++lwTmzZuH+fPn49prr0WNGjXyXH/FihXo2bMnOnTogOnTp2Pr1q148cUXkZycjBkzZrjLPf300xgyZIhW9+zZs3jggQfQpUuXvB1UFUO6deumwsPD1alTp4x9x44dK/wOCRISEhQANXHixAI7xtmzZwusbaJT3Mbb7NmzFQCVkJCQ57oDBgxQkZGRjvepOHPx4kV14cIF9euvvyoAavbs2V7Vi46OVt27d8/3cYcPH64CAgLUgQMH3Nu++eYbBUDNnDkz17r79u1T+/fv17ZlZWWpTp06KT8/P5Wenu7evmrVKgVALViwIN99zS9FeezExESVmZmplFKqe/fueR7XjRo1UldffbW6ePGie9vTTz+tXC6X2rFjR651586dqwCojz76KE/HLJaffPfu3YvGjRsjLCzM2JdzEWeXy4WRI0fi888/R5MmTeDn54fGjRvjq6++MuolJiZi8ODBqFq1qrvce++9p5XJzMzEc889h+bNmyM0NBRBQUFo164dVq1a5bHPSinEx8fD19cXixYtcm//8MMP0bx5cwQEBKBixYro27cvDh06pNXt0KEDmjRpgt9++w3t27dHYGAg/vnPf3o8JnEGb8fb7Nmz0alTJ1SpUgV+fn5o1KiR9pduNlFRUejRowdWr16Nli1bwt/fH3Xq1MEHH3xglN2+fTs6deqEgIAA1KxZEy+++KLxJgUAX3zxBbp3744aNWrAz88PMTExeOGFFwpkUfCCIDExEffff7+7/9HR0Rg+fDgyMzPdZVJTUzFq1CjUqlULfn5+iI2NxSuvvKJdj5z+C1OnTkVMTAz8/Pzw1ltvud/eBg0a5P5kN2fOHAC6hpr9CTUhIQFffvmlu+z+/ftx+vRp7Ny5E6dPy+W4TT777DP06NFDW3i+c+fOqFevHj799NNc60ZHRyMyMlLb5nK50LNnT1y4cAH79u2z1jtz5ozxyTK/7Nu3D3fccQcqVqyIwMBAtG7dGl9++aW17OXLl/HPf/4T1apVQ1BQEG677TbjObZnzx707t0b1apVg7+/P2rWrIm+fftq1/L48ePYuXMnMjIyPPavRo0aef7kms3vv/+O33//HfHx8Shb9n8fYh988EEopTxqwvPmzUNQUBBuv/32PB23WH7yjYyMxJo1a7Bt2zY0adIk17KrV6/GokWL8OCDD6J8+fJ4/fXX0bt3bxw8eBCVKlUCABw7dgytW7d2T8Dh4eFYsWIF7r//fqSlpbmdEdLS0vDvf/8bd999N4YOHYozZ87g3XffRdeuXbFu3TrjM1I2ly9fxuDBgzF//nwsXrwY3bt3BwC89NJLePbZZ3HnnXdiyJAhSElJwfTp09G+fXts3LhRe4CfOHECt9xyC/r27Yt7770XVatW/cvXkXiHt+NtxowZaNy4MW677TaULVsWS5cuxYMPPoisrCyMGDFCK/vHH3+gT58+uP/++zFgwAC89957GDhwIJo3b47GjRsDAI4ePYqOHTvi0qVLeOqppxAUFIRZs2YhICDAOPacOXMQHByMxx57DMHBwfj+++/x3HPPIS0tDRMnTnT2gjhMUlISWrZsidTUVMTHx6NBgwZITEzEwoULkZGRAV9fX2RkZCAuLg6JiYkYNmwYateujZ9//hljxozBkSNHMHXqVK3N2bNn4/z584iPj4efnx969eqFM2fO4LnnnkN8fDzatWsHAGjTpo3Rn4YNG2Lu3Ll49NFHUbNmTTz++OMAgPDwcCxYsACDBg3C7NmzMXDgwCueU2JiIpKTk3HdddcZ+1q2bInly5fn61odPXoUAFC5cmVj36BBg5Ceng4fHx+0a9cOEydOtB7fG44dO4Y2bdogIyMDDz/8MCpVqoT3338ft912GxYuXIhevXpp5V966SW4XC48+eSTSE5OxtSpU9G5c2ds2rQJAQEByMzMRNeuXXHhwgU89NBDqFatGhITE7Fs2TKkpqYiNDQUAPDGG29g/PjxWLVqFTp06JCvvnvDxo0bAcC4PjVq1EDNmjXd+22kpKTgm2++wV133YWgoKC8HThP77OFxNdff618fHyUj4+Puv7669Xo0aPVypUr3a//2QBQvr6+6o8//nBv27x5swKgpk+f7t52//33q+rVq6vjx49r9fv27atCQ0NVRkaGUkqpS5cuqQsXLmhlTp06papWraoGDx7s3pbzk+/FixfVXXfdpQICAtTKlSvdZfbv3698fHzUSy+9pLW3detWVbZsWW17XFycAqDefvvtvF4q4gDejrfscZKTrl27qjp16mjbIiMjFQD1448/urclJycrPz8/9fjjj7u3jRo1SgFQv/zyi1YuNDTU+ORrO/awYcNUYGCgOn/+vHtbcfzk279/f1WmTBn166+/GvuysrKUUkq98MILKigoSO3evVvb/9RTTykfHx918OBBpdT/fnshISEqOTlZK5vbJ1/bdYmMjDQ++WZ/bvf02Tj7WB988IGx74knnlAAtPviDSdOnFBVqlRR7dq107b/9NNPqnfv3urdd99VX3zxhXr55ZdVpUqVlL+/v9qwYUOejpFN9tj773//69525swZFR0draKiotTly5eVUv/75BsREaHS0tLcZT/99FMFQE2bNk0ppdTGjRu9+jQ8duxYBUCtWrUqT/3N6yffiRMnKgDucZOTFi1aqNatW1+x7vTp0xUAtXz58jz1USmliuWEqpRS69atU7169VKBgYEKgAKgwsPD1RdffOEuA0B169bNqBsSEqIeffRRpdSfP9iwsDAVHx+vUlJStH/ZP57Vq1cbbVy+fFmdOHFCpaSkqO7du6tmzZq592X/qF966SXVs2dPFRQUZAyQ1157TblcLrVnzx7juA0bNlSdO3d2l42Li1N+fn7GZE4KD2/GW05SU1NVSkqKmjBhggKgUlNT3fsiIyNVo0aNjDpXXXWV6tWrl9uuV6+e9Yf94IMP5qqhpqWlqZSUFPXhhx8qAGrTpk3ufcVtQr18+bIKCQlRt99+e67lrrrqKnXzzTcbv5Vvv/1WAVAffvihUup/v71BgwYZbTgxoXrLjz/+qACo+fPnG/ueffZZBcCqyV+Jy5cvq5tvvln5+vpq9/NK7NmzRwUEBKiuXbvmpdtu6tWrp1q2bGlsf/nllxUAtXXrVqXU/ybUMWPGaOWysrJU9erV3cfft2+fAqCGDBlSIP4feZ1Qn3/+eQXA6gPRrl07dfXVV1+x7vXXX6/Cw8M17dVbiuUnXwBo0aIFFi1ahMzMTGzevBmLFy/GlClT0KdPH2zatAmNGjUCAE2/yKZChQo4deoUgD9f31NTUzFr1izMmjXLeqzk5GT3/99//31MnjwZO3fuxMWLF93bo6OjjXovv/wy0tPTsWLFCuPzxZ49e6CUQt26da3HlNpARERErl6BpGDxZrz99NNPGDt2LNasWWNoQKdPn3Z/1gI8j0sAOHDgAFq1amWUq1+/vrFt+/bteOaZZ/D9998jLS3NOHZxJSUlBWlpaR6lmz179mDLli0IDw+37s/5GwXsv8fCJPuz/IULF4x958+f18p4w0MPPYSvvvoKH3zwAa6++mqP5WNjY3H77bdj0aJFuHz5Mnx8fLw+FnDlsdewYUP3/pz3TD7HXC4XYmNj3bHS0dHReOyxx/Daa6/ho48+Qrt27XDbbbfh3nvv1X4XhYWn+3Ole7Nv3z6sWbMGI0eO1LRXbym2E2o2vr6+aNGiBVq0aIF69eph0KBBWLBggdvV/UoDSSkFAG6HhnvvvRcDBgywlr3qqqsA/OlANHDgQPTs2RNPPPEEqlSpAh8fH7z88svYu3evUa9r16746quv8Oqrr6JDhw7w9/d378vKyoLL5cKKFSusfQwODtbsvPz4SMFxpfF277334sYbb0SDBg3w2muvoVatWvD19cXy5csxZcoUw5HI07jMC6mpqYiLi0NISAief/55xMTEwN/fHxs2bMCTTz5pdWIqaWRlZeGmm27C6NGjrfvr1aun2UX9e6levToA4MiRI8a+I0eOoGLFivDz8/OqrfHjx+Ott97Cv/71rzzFwtaqVQuZmZk4e/YsQkJCvK5XUEyePBkDBw7EF198ga+//hoPP/wwXn75ZaxduxY1a9Ys1L7kvD+1atXS9h05cgQtW7a01ps3bx4AoF+/fvk6brGfUHOSLTDbBvGVCA8PR/ny5XH58mV07tw517ILFy5EnTp1sGjRIrhcLvf2K8WptW7dGg888AB69OiBO+64A4sXL3b/VRMTEwOlFKKjo42HASkZ5BxvS5cuxYULF7BkyRLt7dMbD/ArERkZiT179hjbd+3apdk//PADTpw4gUWLFqF9+/bu7QkJCfk+dmERHh6OkJAQbNu2LddyMTExSE9P9/gbzY2cv9mCJiIiAuHh4Vi/fr2xLzcHRsmbb76JcePGYdSoUXjyySfz1Id9+/bB39/f+OPcGyIjI41xBgA7d+5078+JHKdKKfzxxx/ul5FsmjZtiqZNm+KZZ57Bzz//jBtuuAFvv/02XnzxxTz38a+Qff3Xr1+vTZ5JSUk4fPgw4uPjrfXmzZuHmJgYtG7dOl/HLZZhM6tWrbL+JZ/tOWf7JHYlfHx80Lt3b3z22WfWH3XOrCbZbxU5j/3LL79gzZo1V2y/c+fO+OSTT/DVV1/hvvvuc78t/N///R98fHwwfvx441yUUjhx4oTX50AKFm/Gm21snD59GrNnz873cbt164a1a9di3bp17m0pKSn46KOPtHK2Y2dmZuKtt97K97ELizJlyqBnz55YunSpdfLJPqc777wTa9aswcqVK40yqampXoWKZHtkpqam5ru/eQmb6d27N5YtW6aFj3z33XfYvXs37rjjDve2ixcvYufOncaLwPz58/Hwww+jX79+eO211654HFvmpc2bN2PJkiXo0qULypTJ+2O8W7duWLdunfZsO3v2LGbNmoWoqCi3pJbNBx98gDNnzrjthQsX4siRI7jlllsA/BkhIe9R06ZNUaZMGe2za17CZrzFdn0bN26MBg0aYNasWVpo2YwZM+ByudCnTx+jnY0bN2LHjh2455578t2XYvmG+tBDDyEjIwO9evVCgwYNkJmZiZ9//hnz589HVFQUBg0alKf2/vWvf2HVqlVo1aoVhg4dikaNGuHkyZPYsGEDvv32W5w8eRIA0KNHDyxatAi9evVC9+7dkZCQgLfffhuNGjVCenr6Fdvv2bMnZs+ejf79+yMkJAQzZ85ETEwMXnzxRYwZMwb79+9Hz549Ub58eSQkJGDx4sWIj4/HP/7xj790nYgzeDPejh07Bl9fX9x6660YNmwY0tPT8c4776BKlSp5+mKSk9GjR2Pu3Lm4+eab8cgjj7jDZiIjI7FlyxZ3uTZt2qBChQoYMGAAHn74YbhcLsydOzdfn4+LggkTJuDrr79GXFwc4uPj0bBhQxw5cgQLFizA6tWrERYWhieeeAJLlixBjx493OFFZ8+exdatW7Fw4ULs37/fGkqSk5iYGISFheHtt99G+fLlERQUhFatWuVJb128eLFXYTMA8M9//hMLFixAx44d8cgjjyA9PR0TJ05E06ZNtWdUYmIiGjZsiAEDBrjjYtetW4f+/fujUqVKuPHGG40/otq0aYM6deoAAO666y4EBASgTZs2qFKlCn7//XfMmjULgYGB+Ne//qXVGzdunFdhKU899RQ+/vhj3HLLLXj44YdRsWJFvP/++0hISMBnn31mTNIVK1ZE27Zt3b+FqVOnIjY2FkOHDgXwZ9apkSNH4o477kC9evVw6dIlzJ071/1Ck01ewma2bNmCJUuWAPgzDO306dPuN92rr74at9566xWvLwBMnDgRt912G7p06YK+ffti27ZteOONNzBkyBC3VpyT7HuQ38+9AIpn2MyKFSvU4MGDVYMGDVRwcLDy9fVVsbGx6qGHHtK8tgCoESNGGPUjIyPVgAEDtG3Hjh1TI0aMULVq1VLlypVT1apVUzfeeKOaNWuWu0xWVpaaMGGCioyMVH5+fuqaa65Ry5YtMzwEr5Qp6a233lIA1D/+8Q/3ts8++0y1bdtWBQUFqaCgINWgQQM1YsQItWvXLneZuLg41bhx4/xeLvIX8Xa8LVmyRF111VXK399fRUVFqVdeeUW99957hkfulbxH4+LiVFxcnLZty5YtKi4uTvn7+6uIiAj1wgsvqHfffddo86efflKtW7dWAQEBqkaNGu7QHogQhOLm5ZvNgQMHVP/+/VV4eLjy8/NTderUUSNGjNA828+cOaPGjBmjYmNjla+vr6pcubJq06aNmjRpkjuEyVOWsi+++EI1atRIlS1bVvP4dTpsJptt27apLl26qMDAQBUWFqb69eunjh49qpXJ7nPOZ1L2ca70L+fxp02bplq2bKkqVqyoypYtq6pXr67uvfdetWfPHqM/jz/+uFeZgJRSau/evapPnz4qLCxM+fv7q5YtW6ply5ZpZbK9fD/++GM1ZswYVaVKFRUQEKC6d++uZYjat2+fGjx4sIqJiVH+/v6qYsWKqmPHjurbb7/V2stL2Exu1yjntbRd32wWL16smjVrpvz8/FTNmjXVM888Y4TDKfWnl3VERIS69tprPfYrN1xKlZA/cwkhhORKy5YtERkZiQULFhR1V/6WcEIlhJBSQFpaGsLDw7Fp0ybrJ01S8HBCJYQQQhygWHr5EkIIISUNTqiEEEKIA3BCJYQQQhyAEyohhBDiAJxQCSGEEAfwOlNSYebJJIVPUTl7/93GVX7OtyDujS1dnacUdjIJv+1ccqZ5AziuCo1AYdvWS5C34rKwPWd39EyYZZtco1vemrPCts1Kp3RTXSyewSl8QyWEEEIcgBMqIYQQ4gDFMjk+IaUFuUix/AQqP5EWFPITqG3xZLlNfgKWfc/MzDTaYJ6YQqK6sOUn3pOWOnKoObGMrlzytZqljFwzvryw5Rrg5tLTZpliCt9QCSGEEAfghEoIIYQ4ACdUQgghxAE4oRJCCCEOQKckQgoQGbtZXOIybU5JAQEBmi2dki5evKjZNoeqwnKy+tuTLmzpYHQRhYOvsKtYyrQStoyZTRL2aUsbJ/LSqaKDb6iEEEKIA3BCJYQQQhyAEyohhBDiANRQCcknPj4+udqAZ02xsDRVqeVKPRQALl3Sk7mGh+sR+Rcu6NH1tty/f7scugVBVWFXtJQ5Jmx5O82haCZ2cIIzwk60lFkm7DHC3iVsqbFeaVsxhG+ohBBCiANwQiWEEEIcgBMqIYQQ4gDUUAnJJ1IfDQw0hR5P2qUtwXxhYNN7g4ODNVtqplJj9fOTmdHt2izJI8eFfb2ljEyOf1DYfzjXnTwhE98DQFdh7xD2UWE3sbSRkO8eFSp8QyWEEEIcgBMqIYQQ4gCcUAkhhBAHoIZKSD4pV66cZtviMs+ePavZUlMtKs6fP29sCwoK0uwTJ/QEqpUrV9ZsqakCXGDcESKFHWwp8x9hy9y+RcUmy7ZOwp4i7CeFfcTShjnUiiV8QyWEEEIcgBMqIYQQ4gCcUAkhhBAH4IRKCCGEOIBLeelFwKTXpZvisvB1SaJiRT1rue1cpOOOTJZgcw4qLkinq/Ll9aj9jIwMo448v6JywirJ4wqPCNvMn2EmoZcJ5tc7152/jLwV0unqVmH/19LGTt1U54qn8xvfUAkhhBAH4IRKCCGEOAAnVEIIIcQBmNiBkHwi9UJfX1+jjNRQPS04Xlj4+/sb22SifpmoIjU1VbNtunuJ1i6LC1uFXd9SJkXYJyxlioLmlm37hC3XkJgtbJs8av60iiV8QyWEEEIcgBMqIYQQ4gCcUAkhhBAHKJUaqtRxpF1QsXHt27fX7B9//LFAjpNXZNJzwEzaTjwjNcWyZfWfj00flWPPlkDfE9HR0ZqdkJD31ZblGPAm/lVqxJLQ0FBj2+nTp/PWMWJqihWEfdJSR8ammmvbe2ShsPvkvQmgi7A3W8rINed/99BmNcs2uQh5MYVvqIQQQogDcEIlhBBCHIATKiGEEOIAnFAJIYQQByiVTkky4Dw/id9ff/11za5du7ZR5r//1bM433jjjZotnUcOHTqU535IxxfATBYgeeKJJzT7jjvuMMp06tQpz335uyOd2dLS0jTbltRAbpsxY4ZmBwQEGHX+85//aHazZs00e8yYMZp95swZow3p/HTxou4Z4udnZly3JbvPyZNPPqnZd955p1Gmbdu2ubZBLJwT9lfCtr32yEQHtXSzh6WKTOUhquBuYX9saQNhwpb+caafmt2pKrc6Fp9R6adVXOEbKiGEEOIAnFAJIYQQB+CESgghhDhAsddQpRZk00PzqpHWqVPH2LZu3TrN/vhjXUHYsGGDUUcG8p84oWeonj59umb37NkzL90E4FkvBYD77rtPs++66y7NlgtDA0CDBg3y3JfShNQ286Ozyzr16tUzyshxM2fOHM3etm2bUUcmqZdJOKZMmaLZQ4YMMdqQeq8cR/IYNuS46tWrl2bbklTYrsHfCamiezWqZCGZcyXKUkcmPxDDKMxSRaZ32STsmpY6BqnCln3PR16PKqKO+XQG9ue92SKBb6iEEEKIA3BCJYQQQhyAEyohhBDiAAWqoXrSqWxxe7KMN4ns5cLO1arpAoPUsaZNm2a08eqrr2r2li1bNDsqKsqoIxOO79ixQ7M7d+6s2SdPmgFZL7/8smZ//vnnmi3jBwHghhtu0OwHH3xQs6VetnmzmbE6MTHR2FZSkePItni2vCbS9mZhbDmuVq9erdkydhkAnn76ac3+7bffNNs2ruR4lvHLV199tWbbkvKPGzdOsz/88EPNtv2umjfXV4eWGurx48c125akvySPK/l2kSWHUSNLJf2SQMkk7pZhVUusOSBlyOuFfX6/2cbvYlt1sd9SxdAmvxb2RlnhHksjIrF95U26bQs5bSpsGdFfV9iVLG28ZdlWHOEbKiGEEOIAnFAJIYQQB+CESgghhDiAS3kZgOeNxlQQtGvXzmMZqRclJSVp9meffabZtvi5mjX1KKywsDCPx5V5WOU1SklJ0WxbntOrrrpKs+Wizunp6UadSpV0lUFqbGvWrNHsli1bGm1I3XXnzp1GmcLAiXHl4+Oj2eXKlfNYp0OHDpptGxMyJ7LUDGVMqTfjqmLFippt0zJlnl2pCcscwl27djXaaNOmjWZL/f7YsWNGHXmcP/74Q7N//vlnzb7mmmuMNp577jnNPnDggFGmMHDkeVVV2BGWMvL2hQvblPMBPQU4aqTq9q2e+mVBLhcvU/0CZspcuc73LmHvjYbJLcJepZs1dsDgJmHXF7bMZm2Lh31J2BvzETdeGPANlRBCCHEATqiEEEKIA3BCJYQQQhyAEyohhBDiAEWaHD82NtbYJp2B+vbtq9m2pO4vvviiZsuECzIgX+4HzIW8z5/XZX7p+AKYTijSqUM6lyxYsMBoY8mSJZpdv74u2cfExBh1Dh48qNnfffedZp8+rWebti0E7U1y9JKCTGzQsGFDo0xEhO5RMmrUKM2uW1eGlwMDBw7M9ThyXNnGiHSOSU1N1WxbEgo5FuV4lePu/fffN9r45JNPNFsmrbf99k6dOqXZK1eu1Gzp2HTrrab7jDeLOZQYpN9WDUsZ6XFzr7DTYFB1qW739NAN0/ULkPkjpGPPfi/qfC/s85V1u5qZtwM+IsOCHPE2VyE50mRe/4rCln5dAJBh2VYc4RsqIYQQ4gCcUAkhhBAH4IRKCCGEOIDXGqrUmKS2CQDJycmaLfUhudC1LQBf6jQ//PCDZq9fv96oIxMXyGB5GQhv03mk/iUD8KVeBgDBwcGaLRM9SA1V7gfMxaN37dLDq2UCdsDUumRf5ULmtqT8jRs3NrYVBbVr66myb7vtNqOMTJAhz7dqVT0Cv0YNU+yS13nRokWaLe8VYI6rjAxdyTly5Ihm25LUSz20enU9jbk8fwCoXFkXs2QiD7m/f//+Rhsykf0vv/yi2d9++61RRyZECQ3VUwHccccdmi31YMCuXxcF0tPClh5GehGIfAvYV0tsGGpppImw3xS2F3ktdgu7o7BtSRoqCDtZ2LZ1vjcI+7zM9CDygxy1LQagr+2AEP1nZL3O8mkr+yZlZtukFGzZVhzhGyohhBDiAJxQCSGEEAfghEoIIYQ4gNca6vDhwzVbJnUHzMTuEqkxyXhJAAgP16OQpI4jdVrATCAfHa1ndW7SRBc6ZEwiYMa/Sr3Tm3hBibwe586dM8rIBadbtGih2SNHjjTqyOv4++96mmu53oFN25OJz4uKYcOGabZNg5Mxs560a9t9kWNE1tm7d69RR8Yiy5hgudC31DYBIDAwULNDQkI027YIg6zjKaG+1HYBYNOmTZp9/fX6stWPPPKIUUdqotu2bcv1OBcvXjTasC06XhRIze24pYxMKL9PFpBD0ZS7zUbkOhSWAx8TnTsm2jghREe5QDcARApbxpjalro4JDd0E3aUsG1CrNBQ08S5fGmu5WFoqGHClpfMJjvbulIc4RsqIYQQ4gCcUAkhhBAH4IRKCCGEOAAnVEIIIcQBvHZKWrhwoWbbkgXUqqVHQleooIcfy8QOMsgdMBOBR0VFabbNkUk6Ick2ZCIHm5OObFc6EG3ZssWoI5NOyAD8//u//9PsLl26GG14Ql4zwHRakcgkBrZE+NKxp6iQiwPIpBWAmahBjjN5LnI/YF4DuQiBzclO3k+Z6F46yNmc8uT5SIcxmXABAP7zn/9otkz+MGDAAM2WjmzeYHPcsi0akRNvnJJs47UokMkSbEtByKTsRgYF6WBj+jICzYQtE+pHw0Q+9kRGiWDxqJF+TwBwWNjyqWi6P5q5/Xf9IDaECXuGpREPNLdsk32VzlGbhW2OKiB3d9fiA99QCSGEEAfghEoIIYQ4ACdUQgghxAFcSoo6V0AGoNs0OJksXCIT0NuSJdSpU0ezq1Spotm33HKLUUcuhCz1zhMnTmh2YS2uLRNING1qhmhv3qwrCDJo36b3Sn1XantSC5PJBABTh5WJAAoL2VfbmLDp9blhG5syCYPUWW0J5mfOnKnZUtu0JYcvDORiAM2aNTPKODGupM4qx4xNy5eLDMikI4VFTfGbqGops8uyLSdSYzUSIwBAD2HLhPJPW+p01s1rftVtmSzeTDlSMFQStmVtdGR5sG24hJ0lf56ikVDLauKyb3u9m7YKHb6hEkIIIQ7ACZUQQghxAE6ohBBCiAN4raFKnc4W69eggb6sr9RgZNyaTYOSCbmvueYazT52TAZ6Afv26WmtfX31gDKZtNybWDmZPN22OLi8JjLeNTExUbPr1atntCEXA5Dal20Rdql/lSmj/10kdUmbpih15aLSUOU1tC3kLq+bvBfy/G0auVyEoHNnXcjas2ePUUfeC9lXGUdtu85yTMj7abu/8jjy/A4f1iP7bAsKSN8DqWXatGr5KPCkocrfGQAcPaqnaZe/58JCXkNbCKm8WzIp+3mZDL+DpRF5enLNAbEANwDgC92UYalHhOhYzvKElpqw1BhlzCkAyGbkMgZyRJjLkJjxoCflY9FcHwKQ4c1SepeNWkTjcBGMm0wNlRBCCCm9cEIlhBBCHIATKiGEEOIA+dZQ80NsbKxm23RJSc2aNTXbFpMoF2CWsXBpaXpElS0HqYzTk/lwbYuDS41Jal1SY7LlepULqMvzs+Vc9aQBnzlzRrNtfZcLasvzLyycGFd169bVbJsOK8eEXHR+//79Rh1P11lq5Lb7K6+9XOjclptajiMZvy1tW0ypzKMtF0u3aahSd5VjT+Yltv0W5cL1Xj5eHMeJcQX5eLrbUkbK1wOEbdNQZUDrVmGv0E1/S3JbGe4q76YthbAczXLhb2/ibmWI6Gphn7Blh5cJfg3RWNjrLW2IIV5U48oTfEMlhBBCHIATKiGEEOIAnFAJIYQQB+CESgghhDhAoTolkeJLiXYeEUinHcB0sJFlbOcvt8kkDdKRy3YuNoeh4oonJzt5ft4495WmcYVwy7YqwpYZFmwrY8u8IynClgubm8MZOGHZVlyROYBkYgf5WpdkaUP47tEpiRBCCCnFcEIlhBBCHIATKiGEEOIAtjBcQko0Nt1S6oGyjE13lRphUSW/KAjk9bAhNVWpIf/tkFonYGZUkKtyh1jqHBa2rFM85UHvMNeHAKTULvOuSM20BP/M+IZKCCGEOAAnVEIIIcQBOKESQgghDkANlfwt8LR4ti1uUS5uIHVXb2Iui6vuauuXp9hNb2J3i+v5FhoyVtVcg93MXC/XR5C2LZTZXFOheCBjaAGgnLDlEKngYT8AmOt7FEv4hkoIIYQ4ACdUQgghxAE4oRJCCCEOwAmVEEIIcQA6JZFSR0Et5CDb9SY5gqQ4O+1IpyPplCXPNyMjw2ijVCd/CPCijC2RvUQ+dWVyCIltyEhHJZszUFEgHZAAc8GA+sKW57/G0saRfPeoUOEbKiGEEOIAnFAJIYQQB+CESgghhDgANVRS6rBpm550VVuSAk+aqazjTRvSLk4LcHtK3CATW9jaKCj9ulhgS3QvT1feTpukLJ+6fh7atCV2kLqjXLRc2oWF7fZXFraU3mVfbTp0CZmp+IZKCCGEOAAnVEIIIcQBOKESQgghDlBCvkyTvzOetEyp/cnE97Y2ypWzBczpeNIQvUmO7wnbYuhFhbwmfn66uCfPVy7AXqyQWp7tSSeHQHkPdi0vjiMT39uGxAVhnxL2GWHbhojcJl+NTnhRpyCwXedIYTcRttRUD1raKCGLrvMNlRBCCHEATqiEEEKIA3BCJYQQQhyAGiopUrzJj+spltOTbUPmnPVG//Qm7lTi6fxsuX0LIzbVdo3kcc+ePavZUpsuqr57hdRHgy1l5OLfgcKW8aG2p6W8BEeFfd5SR14iKUV7o3XKvsu4VFssp+xrQdwqm2uCjDP9XthVhZ1maaOEpIjmGyohhBDiAJxQCSGEEAfghEoIIYQ4ACdUQgghxAFcyksvglKd9JoUmTOJdNKxjTNvyuRWHvB8fvlxSvIGT45MBXVciTfOXzJBhicHKtti4rKvRbWgustPjJEgSyG5YLi0Zdel0xJgOhB5cjiyIRM9eEq4DwDnhC37ajuu3OZEAn15XaUjFwCEe6hzVti2xcTFNVLni4nzm4BvqIQQQogDcEIlhBBCHIATKiGEEOIAXmuohBBCCLkyfEMlhBBCHIATKiGEEOIAnFAJIYQQB+CESgghhDgAJ1RCCCHEATihEkIIIQ7ACZUQQghxAE6ohBBCiANwQiXEIVwuF0aOHOmx3Jw5c+ByubB///6C7xRxM3DgQERFRWnb0tPTMWTIEFSrVg0ulwujRo0qkr4VZ7LH6/r164u6K8WeUj2hZg+EnP+qVKmCjh07YsWKFUXdPVKC2Lp1K/r06YPIyEj4+/sjIiICN910E6ZPn17gx54wYQI+//zzAj9OaSApKQnjxo3Dpk2bvCo/YcIEzPn/9t40vIoqa/++T0LmARISCAQIIQlTAFFkbAZREBuZXkG0VUZtlAYUxUbtfnwABxQFoUEJoDbayCMOICoyiIJDK8qgorYigwSZ5wBJgECy3g/8c5q9apNzEooMeP+ui0tXnV27dlXtUzt17jW88gqGDx+OefPmYcCAAcU+5s8//4wbbrgBkZGRiI2NxYABA3Dw4EG/9q1bt67jGeXxeHDPPfc42m7YsAE9evRAQkICIiMj0axZM0yfPh35+brkzeXD/fffj6uuugqxsbEIDw9Ho0aNMH78eGRnZ/vdx8svv4xGjRohNDQUaWlpRX5n33jjDbRt2xYRERGoUqUK2rVrh1WrVvl9rEp+t6zAPPbYY0hOToaIYP/+/XjllVfQvXt3vP/+++jRo0dZD4+Uc7788kt07twZderUwZ///GckJCRg586d+Oqrr/CPf/wDo0aNKlZ/AwYMwK233oqQEFutKycTJ05Ev3790KdPnxKM/vfFnj17MGHCBNStWxfNmzc3PnvxxRcd5eRWrVqFNm3aYNy4cSU63q5du9CxY0dUrlwZEydORHZ2NiZPnowffvgBa9euRXBwsM8+mjdvjjFjxhjb6tevb9gbNmxAu3btkJaWhoceegjh4eFYtmwZ7rvvPmzbtg3/+Mc/SjT+8s66devQoUMHDBkyBKGhofj222/x9NNP46OPPsJnn31mLUN4PrNnz8Y999yDvn374oEHHsDnn3+Oe++9F7m5uXjooYeMtuPHj8djjz2Gfv36YfDgwThz5gx+/PFH7N692/8By2XM3LlzBYCsW7fO2H7kyBEJCgqS2267rYxGRioS3bt3l/j4eDl69Kjjs/3793v/H4CMGDHClWMWFBRIbm6uiIhERETIoEGDXOn3cuXMmTNy+vRpWbdunQCQuXPn+rVfcnKy3HjjjSU+7vDhwyUsLEx27Njh3bZy5UoBILNnz/a5f1JSkl/H//Of/yzBwcFy+PBhY3vHjh0lOjq6+AMvBhd6jpYVkydPFgCyZs2aItvl5uZK1apVHdf39ttvl4iICDly5Ih325o1a8Tj8chzzz13UWO7rH/yvRBVqlRBWFgYKlX67wv65MmT0a5dO1StWhVhYWFo0aIF3n77bce+J0+exL333ou4uDhERUWhV69e2L17NzweD8aPH1+KZ0FKi23btiE9PR1VqlRxfFatWjXHtsWLF6NJkyYICQlBeno6li9fbnxu01Dr1q2LHj16YMWKFbj66qsRFhaG2bNnw+PxICcnB6+++qr358DBgwe7fIalw+7du3HnnXeiZs2aCAkJQXJyMoYPH468vP9Wus7KysLo0aNRu3ZthISEIDU1FZMmTTLeLDMzM+HxeDB58mRMmzYNKSkpCAkJwcyZM9GyZUsAwJAhQ7zX65VXXgFgaqiffPIJPB4Ptm/fjg8++MDbNjMzE8eOHcOmTZtw7Ngxn+e0cOFC9OjRA3Xq1PFu69KlC+rXr48333zT72uTl5eHnBxdafu/HD9+HKGhoY45WKNGDYSF6cro/vPtt9/ij3/8I6KjoxEZGYnrrrsOX331lbVtbm4u7r77blStWhXR0dEYOHAgjh49arRZv349unXrhri4OISFhSE5ORlDhw412uzduxebNm3CmTP+VF93UngPs7Kyimy3evVqHD58GH/5y1+M7SNGjEBOTg4++OAD77Zp06YhISEB9913H0SkWD8pG1zUclzOKfzL6qOPPpKDBw/KgQMH5Mcff5S7775bAgIC5MMPP/S2rVWrlvzlL3+R559/Xp577jlp1aqVAJAlS5YYffbv318AyIABA+SFF16Q/v37yxVXXCEAZNy4caV8hqQ0uP766yUqKkp++OGHItsBkCuuuEJq1Kghjz/+uEybNk3q1asn4eHhcujQIW+7wnm5fft277akpCRJTU2VmJgYefjhh2XWrFmyevVqmTdvnoSEhEiHDh1k3rx5Mm/ePPnyyy8v1aleMnbv3i01a9aU8PBwGT16tMyaNUseffRRadSokffNPycnR5o1ayZVq1aVv/3tbzJr1iwZOHCgeDweue+++7x9bd++XQBI48aNpV69evL000/L1KlTJTMzUx577DEBIMOGDfNer23btomIyKBBgyQpKUlERPbt2yfz5s2TuLg4ad68ubdtdna29/74esvdtWuXAJBJkyY5PrvjjjskNjbW53VJSkqSsLAwCQwMFACSlJQk06ZNc7TLyMgQAHLXXXfJTz/9JJmZmZKRkSFBQUHW9v7w448/SkREhHe+Pv3005KcnCwhISHy1VdfedsVXo+mTZtKhw4dZPr06TJixAgJCAiQjh07SkFBgYic+7UmJiZG6tevL88++6y8+OKL8ve//10aNWpkHHfQoEGO+V8UZ86ckYMHD8ru3btlxYoV0rBhQ4mKinK8rWueeOIJAWD8iiQicvr0aQkICJAHHnjAuy0uLk569eolU6dOlapVqwoASUhIkBkzZvg1xkJ+Fwuq/hcSEiKvvPKK0bbw57VC8vLypEmTJnLttdd6t23YsEEAyOjRo422gwcP5oJ6GfPhhx9KYGCgBAYGStu2bWXs2LGyYsUKycvLM9oBkODgYNm6dat328aNGwWA8cW80IIKQJYvX+44/uXwk+/AgQMlICDA+rNh4QP58ccfl4iICNm8ebPx+cMPPyyBgYHy22+/ich/F9To6Gg5cOCA0baon3zPX1ALsf3k6u+CWnisf/3rX47P/vrXvwoAOXXqVJF99OzZUyZNmiSLFy+Wl19+WTp06CAAZOzYsUa7s2fPysiRIyUoKMj7HAsMDJSMjIwi+y+KPn36SHBwsPcPDhGRPXv2SFRUlHTs2NG7rfB6tGjRwpjzzzzzjACQd999V0RE3nnnHb9+Gi7ugrpmzRrj+d2gQQNZvXq1z/1GjBghgYGB1s/i4+Pl1ltvFZFzEiAAqVq1qkRGRsqzzz4rb7zxhtxwww0CQGbNmuXXOEV+Jz/5vvDCC1i5ciVWrlyJ1157DZ07d8Zdd92FRYsWeduc/7PJ0aNHcezYMXTo0AHffPONd3vhT3f6J4TiOqWQikXXrl2xZs0a9OrVCxs3bsQzzzyDbt26ITExEe+9957RtkuXLkhJSfHazZo1Q3R0NH799Vefx0lOTka3bt1cH39ZU1BQgMWLF6Nnz564+uqrHZ97PB4AwFtvvYUOHTogJiYGhw4d8v7r0qUL8vPz8dlnnxn79e3bF/Hx8a6Pd/DgwRARnz+tnzx5EgCszmWhoaFGmwvx3nvvYezYsejduzeGDh2KTz/9FN26dcNzzz2HXbt2edsFBgYiJSUF3bp1w6uvvoo33ngDPXv2xKhRo0rkAZ6fn48PP/wQffr0Qb169bzba9Sogdtuuw3//ve/cfz4cWOfYcOGISgoyGsPHz4clSpVwtKlSwHA+3P0kiVLivw595VXXoGIOEKYLkTjxo2xcuVKLF68GGPHjkVERIRfP8mePHnygk5hoaGh3ntT2Nfhw4fx0ksv4cEHH0T//v3xwQcfoHHjxnjiiSf8GidwmYfNFNKqVSt06dIFXbp0we233+69UCNHjvTqN0uWLEGbNm0QGhqK2NhYxMfHIyMjw9BRduzYgYCAACQnJxv9p6amlur5kNKnZcuWWLRoEY4ePYq1a9fikUcewYkTJ9CvXz/89NNP3nbna2mFxMTEOLQmG3peXS4cPHgQx48fR5MmTYpst2XLFixfvhzx8fHGvy5dugAADhw4YLQv6+tV+Ef46dOnHZ+dOnXKaOMvHo8H999/P86ePYtPPvnEu/3pp5/GpEmT8Prrr2PgwIHo378/3nnnHbRv3x4jRozA2bNni3WcgwcPIjc3Fw0aNHB81qhRIxQUFGDnzp3G9rS0NMOOjIxEjRo1vL4AnTp1Qt++fTFhwgTExcWhd+/emDt3rvX6FIfo6Gh06dIFvXv3xqRJkzBmzBj07t0bGzduLHK/sLAwQ58/n1OnTnnvTeF/g4KC0K9fP2+bgIAA3HLLLdi1axd+++03v8b6u1hQNQEBAejcuTP27t2LLVu24PPPP0evXr0QGhqKmTNnYunSpVi5ciVuu+02iEhZD5eUI4KDg9GyZUtMnDgRGRkZOHPmDN566y3v54GBgdb9/JlHF+NccjlQUFCArl27en9N0v/69u1rtC/r61WjRg0A55xsNHv37kVsbKzfoVHnU7t2bQDAkSNHvNtmzpyJa6+9FpGRkUbbXr16Yc+ePeUiSYjH48Hbb7+NNWvWYOTIkdi9ezeGDh2KFi1alNzJx8JNN90EAFiwYEGR7WrUqIH8/HzHH2J5eXk4fPgwatasCQCIjY1FaGgoqlat6vj+Fjod+vMHMfA7iUO1UfgXXXZ2NhYuXIjQ0FCsWLHC+ALMnTvX2CcpKQkFBQXYvn278dfa1q1bS2fQpFxR+POl7YHqJoU/iVZU4uPjER0djR9//LHIdikpKcjOzva+kZaE0rxWiYmJiI+Pt2YQWrt2rSMO1l8K5YHzf87ev3+/NYFD4U+rxX1DjY+PR3h4OH755RfHZ5s2bUJAQIB3YS9ky5Yt6Ny5s9fOzs7G3r170b17d6NdmzZt0KZNGzz55JP4v//7P9x+++1YsGAB7rrrrmKN8UKcPn0aBQUFPr2wC6//+vXrjTGuX78eBQUF3s8DAgLQvHlzrFu3Dnl5ecbPxHv27AEAv6WF3+Ub6pkzZ/Dhhx8iODgYjRo1QmBgIDwejzFhMzMzHdpEob41c+ZMY3tpZMshZcfq1autb5iF2pHtZzM3iYiI8BkiUJ4JCAhAnz598P7771sXn8Jr279/f6xZswYrVqxwtMnKyvJr0YiIiPC2LynFCZvp27cvlixZYvw8+vHHH2Pz5s24+eabvdvOnDmDTZs2GX98HTlyxLFInjlzBk8//TSCg4ONxat+/fpYuXIlDh8+7N2Wn5+PN998E1FRUYZu7w+BgYG4/vrr8e677xpvt/v378f//d//oX379oiOjjb2mTNnjqGNZmRk4OzZs/jjH/8I4NxbnP6eFC5a5//s62/YTFZWlrXNSy+9BACGHp+bm4tNmzbh0KFD3m3XXnstYmNjkZGRYeyfkZGB8PBw3Hjjjd5tt9xyC/Lz8/Hqq696t506dQrz589H48aNvW+zPvHbfakCUuid9thjj3nd4qdMmSItWrQQAPLwww+LiMjHH38sAKRDhw6SkZEhEyZMkGrVqkmzZs1EX6K+ffs6wmaaN28uAGT8+PFlcZrkEpOeni7JycnywAMPyJw5c+T555+X2267TQIDA6Vu3bresA9cILFDUlKS4aV7IS/fCwX4d+/eXSIiImTKlCny+uuvGyENFYVdu3ZJQkKCN2xm9uzZMn78eElPTzfCZq666iqpVKmS3HXXXZKRkSGTJ0+WQYMGSUREhBw8eFBE/uvl++yzzzqOk5eXJ1WqVJEGDRrISy+9JK+//rr8+uuvIuK+l6+IyG+//SZVq1aVlJQUmT59ukycOFFiYmKkadOmhodv4Zj1PEhJSZGHHnpIZs2aJRMnTpQmTZoIAJk4caJxnNdee00ASEpKikyaNEmmT58ubdu2FQDyxBNPGG399aItDJtJTEyUJ598UiZNmiT16tXzGTYzY8YMGTlypAQEBEj79u29XtpTp06VtLQ0GTt2rMyePVsmT54sDRo0kOjoaO89KM743nnnHaldu7bcf//9MnPmTJk2bZr07dtXPB6PXH311XL69Glv29WrV1sjLV544QUBIP369ZMXX3xRBg4cKADkySefNNrl5uZKenq6BAUFyYMPPijTp0+Xli1bSmBgoCxdurTIcZ7P72JBPf9faGioNG/eXDIyMrwTQUTk5ZdflrS0NAkJCZGGDRvK3LlzZdy4cY4FNScnR0aMGCGxsbESGRkpffr0kV9++UUAyNNPP13ap0hKgWXLlsnQoUOlYcOGEhkZKcHBwZKamiqjRo3yK1PSxS6omzZtko4dO0pYWJjjoVyR2LFjhwwcOFDi4+MlJCRE6tWrJyNGjDAejCdOnJBHHnlEUlNTJTg4WOLi4qRdu3YyefJkb8hGUQuqiMi7774rjRs3lkqVKhkL46VYUEXOLUzXX3+9hIeHS5UqVeT222+Xffv2GW1sC+r69eulZ8+ekpiYKMHBwRIZGSnt27eXN99803qc5cuXS6dOnSQuLk6Cg4OladOm1pCOvn37SlhYmDWzl+abb76Rbt26SWRkpISHh0vnzp0dcc6F1+PTTz+VYcOGSUxMjERGRsrtt99uxIJ+88038qc//Unq1KkjISEhUq1aNenRo4esX7/e6M/fBXXr1q0ycOBAqVevnoSFhUloaKikp6fLuHHjJDs722h7oQVVRGTOnDnSoEEDCQ4OlpSUFJk6darx7C9k//79MmjQIImNjZWQkBBp3bq1NYytKDwi9Lq5WL777jtceeWVeO2113D77beX9XAIIb9jqlevjoEDB+LZZ58t66H87vhdaqgXgy2ubNq0aQgICEDHjh3LYESEEHKO//znPzh58qQj8TspHX63Xr4l5ZlnnsGGDRvQuXNnVKpUCcuWLcOyZcswbNgwh1ccIYSUJunp6Y6EDKT04E++xWTlypWYMGECfvrpJ2RnZ6NOnToYMGAA/v73vxvJ9gkhhPy+4IJKCCGEuAA1VEIIIcQFuKASQgghLsAFlRBCCHEBv71oKno+UVI0ZSWl6/JKhanjikInRdcp0mwJ6qOiogz7/MTjgD0cSrfJzc0t8ji2UlG+ynddKvQ10incbHlhL8UcKKt55YlQz6s4P3aqrOwayrZVAktQ9nZlZ1n20W103vUgZdu+Ev7lanefGGXnKtuWTbDA/WGUV9cfvqESQgghLsAFlRBCCHEBv8Nm+JPv5U1Z/YQSFGT+vmWL5Q0IMP/u0z/fxsSYv0PZ+qhc2fw9LzQ01LA3b97s2Ef3o2sixsbGGrbtO6J/FrYd52KxFbjX12TTpk2GfeLECdfHYaPMfvINVffCVjpVKwPVlF1X2bbSproIif7Z+GPLPvon3Z3KTlK2rcSu7mOlpc3Fcq1lmx7bUmXvvwTjsMCffAkhhJDLGC6ohBBCiAtwQSWEEEJcgAsqIYQQ4gLM5k7KlLNnzxq2dkCyoWMqdXxofHy8Y5/q1asb9unTpw27YcOGjn2040N4eLhh++NQFRJierLk5eUZdmZmpmMfX2jnJ30uALBu3TrD7tmzp2F/8MEHjn0KCi5BwGBZoS+J7UmnT/eUso8oO83SR7qydaGXbpZ9tD9NrLK1A5XNGUrHpuYo+0vLPr7QPnW2ojVzlT1Z2Y9Y9rHFpl6m8A2VEEIIcQEuqIQQQogLcEElhBBCXIAaKilXaI0RcGqGWmfVti3oW+uDSUlmhLpOfAAABw8eLLJfnbRBa7kAULt2bcOuUqVKkeMAnBqxTsKgkzbY8gVPmTLFsFeuNCP/tbZ7oX4uG7TGCDhfJ/TTUCdUcObPAM4qu42yl1v22aJsreXqpA22vL0tlF1H2ba8B/oaHPDRR5alD93v48qOtOxTVnmHywC+oRJCCCEuwAWVEEIIcQEuqIQQQogLMDk+AVCGScxLMK90/KeuQ1q/fn3HPnFxZkFMrSHaYjm1pnjo0KEij6uT5wPOpPz6uKdO6eBH4NixY45t56N15qZNmzraaD03MtIUt3744QfHPvv27SvyuCWhIs0rR/ynjvXsatlH66pRyrbVINDTZKuytQ6ZaemjtrL1WG0xpLuVrW+NdgH4/yx96NhcHfL9jmWf/1i2XSRMjk8IIYRcxnBBJYQQQlyACyohhBDiAuU+DvUvf/mLYc+cObOMRlJ+0XpRedUX3ELHaWrblh9X652jRo0y7CeeeMKxj87Nq/VOrVPainbrmFGtf+rPAWdcrT4/HVO7fft2Rx9au01LMxPR/vLLL459fvfoMFxt2/Ljhis7WNnOWwOEKlvrnVpjtUnbOnxZx5g6w5ud8a1aM81X9heWPhKV3UXZH1r2UWh1+3J6WvENlRBCCHEBLqiEEEKIC3BBJYQQQlyACyohhBDiAqXqlKSdPHRxaQDo3LmzYWunDf05AOTnm2r6li1m9ukjR8xoZFsQf0XmcndC0minHe1wZCtS3qhRI8PWSRqaNWvm2Ecndvj+++8NOzbWrAxtS46vt+mkFDaHIu38pJPw6/mubQCoW7euYb/33nuG/XubM36hnXb0NNLJ8gHgJ2XrxAe2y6yniXZC6qTsw5Y+9HF0Uop/W/bRzk/6fHUhcGedCqCdssco2zkVHVzOM49vqIQQQogLcEElhBBCXIALKiGEEOIClzQ5vtaydEC6Tet6+eWXDVsPLzxcR1ID2dnZhp2QkFDkPrq9DX2+tvP3den05zbNWG+Ljo72edxdu3YZdk6OGdWtNbdvvvnG0Yev61xalGRe+So4Hh+vM3YDzz77rGFrHd02F/fv32/Yeh4lJppR7tpHwLYtIsLMYq7vN+C8n1pT1bbtuFoT1nqv9isAgPHjxxv27t1mNnU9R7777jtHHzrBfoWaV8oWnaShnmUnJYEHKvcM590F4pSdoOzflL3T0keBvuWxytadAk4tVuch0RqrbfB3KFvXqd/m3GWYKd+jlo8unE9J4O/KLq8+AHxDJYQQQlyACyohhBDiAlxQCSGEEBe4pHGoWjPVvPrqq45tVatWNeysrCzDtv12rnUonYBc76OLPAO+NRebxuZrH1/nD/iOodTxkgBQq5apQmgNTeuDWusDnBpqRULfTx2HqbVAwFlgXGt9OgE94NRMtd7tS8sFfN9fW+yqHosuOK4/T03VVa6d3yM9F3/6SQdQAo0bNzZsHQO+d+9ew+7a1Vlxe968eY5tFQXHk0XFYcZucu5zRN1ynffe9oDVTx/9lDigbB1iCgA5Ot5TJ/K3JeVXmmkdH+PaYtNQdQh/lrLXOHfZo2z9NNJyr60me0WBb6iEEEKIC3BBJYQQQlyACyohhBDiAlxQCSGEEBcosVOSP4HT2nlEJ+zWSewBoEqVKoatHUHCwpwSvd7mK3m4TnoOOM9HJzH3B92HP05J2klF9+FPIovIyEjD1oH/NmeZDh06+BxbRaFatWqG/csvvzjaaMcsfc1sTknauc1XknrbnNFt/HFk0t+b0FDT1eX4cTMCXyegAICaNWsatnZC0t8zwHkdjx41s7breaWd4wCnY1N5wZ80D9opqYqyrU8E9RXPUTvlZzl30S5kp5Stx5pje0rrpBP6MWEbrDrB/Sq/jR6XZxcciMoyEfyhaedpTycAnys7Sdl1lW3zp0q2bCuP8A2VEEIIcQEuqIQQQogLcEElhBBCXMBVDVVrhlFRUYatNVSb9qO1HZ2kwJaUQR9XJzrwR8vU+/jSy/zpV2thtvZap9NtdGIA21g1eh9be31vKhJad9TFELT2B9iT0J+PTUP1pXf6c39tGun56Hlm26aTP2gN3aaz6310kobq1as79vnss88MW1+Tzp07G/bOnc607Tr5f3nBdhf0N1rnl49Utq3Ot+5XTwHbrNN1u3Uf+gl32pIt3vE00kKszjBh6ThaaahmKhDn9QCAwyqxQ14D1aCuc5+rVLZ/PbQXlG3z7rikGYhchG+ohBBCiAtwQSWEEEJcgAsqIYQQ4gIl/mnapg1pDalVq1aGvXXrVsPu1KmTow+tW2n9z6ah6lhVbfuTHF9rpPpcbPqYL+3Wpo/5Qo/VFjOr22gdVhcU0MWmAd86bHmmTh0z2O3AATOduNZUAd/3RmuMgDPeU+v5+j7Y7rdu4yuxv22bvr8nTpjpw21j37bNrPR89dVXG/Zvv+ky1sDhw6ZK2K5dO8P++eefDbt58+aOPlatWuXYVh6wzXZ95dOV/a2ybbGsBfqWq8eEs4y7U2bUY9Pjso7dl/Bqe1VSJ6DVbh1V7JwhwOHP1Ia7lL3euU9dZT+n7CbKdpZtuEAMcDmEb6iEEEKIC3BBJYQQQlyACyohhBDiApc0l2+NGjUM++OPPzZsW+5TrX9qrVbnEwV8x4xq3UofA3Dqofr8bIXNfelhvsYBOK+BPl/bWHUbPXZ9HFssq6/4yPKMjqH89ltT7bLF2GqdUV9XXcQbcM4BX3Pe9rmem/q62+6NHpu+v7pPf3T23bt3G7b2ZwCAu+4yBbH333/fsLXuqn0kAPv5lAf8yeWrn0bZWmR0PnqA+so2ZXecVbGeAKAjnrVmqj8/bRu8Dj3WwZ06iBZw5PLNP2TaaujWwuaBuo8vTDvOIoDOvdG0239g2mmq/deW4+rY3fJKxX2qEkIIIeUILqiEEEKIC3BBJYQQQlyACyohhBDiAiV2SrI52BT74H4kF/CVPAHwnQzCjULftgB8X+Pw57i+HIpszkPaaUUfVxdctxVl9+d8yivakUtfQ9s1O3jwoGHv27fPsG3zSh9HX3d/Enf4KlzvT+GCypUrG7ZOwGArBqCvwZ49ewy7fn3tTQNs3LjRsHUClLQ0033E5vxlc6IrD/jztHK4dqmviMfylZHNph3hx9dK+zb5LCdgG7x+tOhpZEuOrx4DezJNuy6Ktm3d5isnpO/jLPsoJ6Rc9blOoKHy7wOoOG9+FWWchBBCSLmGCyohhBDiAlxQCSGEEBe4pBnStbaj9SOd1BxwBobrIsehoU5xQAe2+wrI90f/9RVMbxurG7qyxpYswFfyC3+SFuhE7xUJfW/0nLAVrtfXSJ9/SYof6KT1Nu1Wz3k9n/1JuqELiMfFmUJVTk6Oow/93UtPN1O/a00VALZs2VLkPocOmZkAbPPKlnilorBbb9C3xnJqlZRmqh+otgLjuhv91HCWi3dyUmu12rZ9vXVSBnV+e1X2BIsc6tBVFys7USWLAIAWyl6qbF3I3KnM+5eYozzAN1RCCCHEBbigEkIIIS7ABZUQQghxAb811JLEWH72mVmN9uabbzZsXSgZcOqQ+rg2LVPHy/mK7bThq6C4TcvUWpeO7fQVL2obmz/XWetwOs5U92GLDSyv8YL+8N133xl2z549DTsiwhnZp6+j1vpsCea1zqq1TN2nLbZXH0fPX1uMsNaEdRyq1kdtmnFKSoph68IUeg4BQFJSkmPb+ezcudOwdZECwL/Y3NJAf9P8me1aVa6kE903dO4TsMm0dan3RMtxdBJ+ffccsZ6WPk7qYE6tmdoeefprkWyae38xbdtseE/Zo5VtK43wsbL1DNElFhxaNoB9lm3lEb6hEkIIIS7ABZUQQghxAS6ohBBCiAtwQSWEEEJcwG+nJO08Y3P00Q4J2ulo0yZTwZ8/f76jj+3bt5sDVMH0tmByjXa48MeBypfjkg7QB3wndvDnuCVBO7po5xntYGNL4lCRk+PrhAqZmZmG/dxzzzn2+eabbwxbO/rs2LHDsY8v5zY9Dm0DzrnoK2mDrY2+33oc2dnZjj7WrFlj2DVq1PA5Vl1AICsry7C1I5ttfl+K5CYlQY/CNtv1w++s9gbSrxvKScnW70Fl17IcV6Ovorat31Q9Nu3pEwIn2lPrTJGmNcHCEGV/rWxbUooEZVdRti7tYEsNcmmepO7DN1RCCCHEBbigEkIIIS7ABZUQQghxgRIndrBpJb50Oa1jLVmyxNGmVSszzFdrqDbNyZYg4nz80XV86Z+2gHWtdflT6Lq42LRbnbjAVwJ2rZ8BFVtD1Vre999/b9hvvfWWY5/OnTsbtj7/6GhnGvMjR44Ytp6LWpu2FW7Qc0KP3ZZgQScq0fM7Pj7esHVSe8B5PpGRkUX2CQCxsWaa8quuuqpY4wDKb2IH2xPgrG6kXQ0qK9tZxx35tU07R2mXW7Y699GpPHwVHLclpQhXX9+jKhtCni05flXTDPhV7aMerdE6eQScOqvGmerDWVBc1Rt3FBBQ+SYAAE4vgfIJ31AJIYQQF+CCSgghhLgAF1RCCCHEBUoch+oGtqTeUVFm9NO3335r2MnJzl/YExPNFNS6ELLWy2xal47L01qQTQ/V22zJ733hK77XprFpfCVptyXC15paRUbfq23btjna9OvXz7AXLlxo2HreAUBaWpph63hXje3+6/untU1bQW6tkev7uW7dOsNOSNCRfs57/sUXXxj2tdde69hHa6g6Nlcn8rc9E6pWrerYVhb49bTy1Uhleo/IcjbJ0YLnZtO0xWUeUXY1ZesIYefTyhl26niSWvReLVbqoXdXYufPli60R8c9yn7Wso/+Nl6t7F3KdkZIAzmWbeURvqESQgghLsAFlRBCCHEBLqiEEEKIC/itoWps8Wa+Yhu1vuJP4esWLVoY9tq1ax376MLHzZo1M2ytbeXkOH+R1+fjT6FvXwXEfRUgB0qW/1f366tYuE37s+WuLQ/YtGod/6n1bp2X15bbVueA7tatm2E/+6xT/dmwYYNh9+nTx7B1rlvbdU5NTTVsPUdsc2LXLlNV2rhxY5F9fPTRR44+dGxy7dpmwOSvv6ogRDj13Zo1axq2nquHDx929KHzAZcXbN4NokVE/VhQsZzOSGUg55DaYMruaKSKdgNO6fZTZddVdgPLcT9RtuNpbHkUh6hb3ld9rr95Yy3H1ZfoC2W3tOzzm7LX6Srk6pGXZ3ucxVq2lUP4hkoIIYS4ABdUQgghxAW4oBJCCCEuwAWVEEIIcYESOyX5k1xdB5zv3bvXsG0FxnWyB+3IdNNNNzn20U4bW7eaGanr1q1bZJ8AcPy4WT1YO/rYzldv0w5F/hQU8JUww5YsoLhJNmyOTrYC0+UBm7ObvgbVqpmh8DoZvnYmApyOa3puPv/88459Xn/9dcNeuXKlYbdp08aw//CHPzj60PPZVxIOwHl/tXOQdvyJi4tz9KGdu7TjVnCw9gxxXnud/F+Py1a43ubwVx4QW4YF9TqhZ95Q048Ny20d68zv6qu2NN25S9J/TLuD+vxHZS+zHLaKsvXYba6NOkWMdihqqOzvLH3op8Z2ZVvy6TsS21dSneix2wqbH7ZVHS+H8A2VEEIIcQEuqIQQQogLcEElhBBCXMAjfgpyWseyFa2+4YYbDFvrNFqDmjRpkqOPpKQkw9aajA7ytx1H64O6UHRMTIyjD62r+ioeDvjWUP1J0uALf7Rq3Wb3brPasC7aDgDdu3c3bF2ku7TQup1O0A4AjRs3Nmw9ZX/5xYyetyVpSE83xSw9Z2zan9bRdSL7H374wbDr1avn6EMnGdFjtyXl0Nrkvn37DFsn3Lfp7LoYeJUqVQzbdp1t3+nz+flnM116x44dHW1atjRD+7V/Q2nhCTKvSaglWYD+VuhyEeuUbStTkaUfR3WVrTO/AwhTeqDuormydWIEANhRRW3Q52cbrNIuG6gnv058b3vy6Bmix2appw40U7Y+0F5l2zJoqKIDku9+sRY34BsqIYQQ4gJcUAkhhBAX4IJKCCGEuIDfGupVV11l2K1bt3a0Wb7cjNTyVZD5xhtvdGzTSbx1wu6jR52Vc3XR8YYNzYgqHbenNUbAGYd48uRJw9bFlQGnHqa1rJIUHNfY+vCVYF0nRg8Pdwbhbd9uRpBdigLy/tCoUSPD1jGmAPD1118bti3+8Xy0bgkA7du3N+wmTZoY9r///W/HPvHx8YattWgd76xjTgEgIyOjyLHqGFPAdwy0Tspv0+p9Fa63zSuts+p7Y/vuabZs2WLYWu8tLaqo83NGCDv1Px3/qbnKsu0bLYCq7PCxa5z7VFe2lhD1jLDNdn1VddHybKebiLMj1UkNZWupE3AWGfDnjUw/bfP+qDZsUrY+GcAxdjlJDZUQQgi5bOGCSgghhLgAF1RCCCHEBbigEkIIIS5Q4sQO5PKirJySKvK88qf4gXaq0w5jOlkE4ExecuzYMUebS4FOoK8d83TyE+0cBTgdxvxJTHIpqMjzyvGaY8sPoz2XtN9hlmWfEGU7fTMvDYnK1tM5WdmWZBgwa5dAztIpiRBCCLls4YJKCCGEuAAXVEIIIcQFSlxgnJCKRGpqqmHrpAw2tP6pi9D7ozvrfXQxcH0MAIiMNNO0+0qOEBXlLMlsSzLhi9xcszy0TuygCwj4U1Dgsqezslf7sY/WP/co25+aGnqfNB/HAIB4ZWv5Xk/nBEsfP/kYlw2dqKG7sg/7sAHnWMspfEMlhBBCXIALKiGEEOICXFAJIYQQF6CGSn4X+KOZarT+WRJ0wnld7L5OnTqOfXQSep38XhdqsBU21wUhdFym1kcBZ9yptrU+qrVeoOziTssMfzRTjdY/S0JtZW9XtrN2CbBD2Vqa1wn1nfXjgV+UrV/JnPVOAF1TIUvZWh/VWi/gKI5eXuEbKiGEEOICXFAJIYQQF+CCSgghhLgAc/kSAMzle6nQxd11vlxbjKmv4uA6H3BJYk5tpKSkGHZSUpJhHz5sBgjaxp6ZmWnYtljV0uByn1eoqmwdd2qL29TxrdrW+YD/U9xBXYBOym6r7F+VnQsnqlC7HGIuX0IIIeSyhQsqIYQQ4gJcUAkhhBAX4IJKCCGEuACdkggAOiWVBJ1gQSdCAJyJHXSSBm0DTqcjnejhUqELm+vE/fr8IiIiHH3oeXTo0CGXRlc8KvK8ciRYsN1+ndhB59Ow1SjQTkeZxRjTxaALm+uC4/r84uBEfU1kK52SCCGEkMsWLqiEEEKIC3BBJYQQQlzAbw2VEEIIIReGb6iEEEKIC3BBJYQQQlyACyohhBDiAlxQCSGEEBfggkoIIYS4ABdUQgghxAW4oBJCCCEuwAWVEEIIcYEKv6AOHjwYkZGRPttdc801uOaaa1w77jXXXIMmTZq41h8hmZmZ8Hg8mDx5clkP5bJj8ODBqFu3rrEtOzsbd911FxISEuDxeDB69OgyGVt5hnOyeJTJgjpz5kx4PB60bt26LA5f4Zk4cSIWL15c1sOokPzwww/o168fkpKSEBoaisTERHTt2hUzZswo66GRi2TPnj0YP348vvvuO7/aT5w4Ea+88gqGDx+OefPmYcCAAcU+5s8//4wbbrgBkZGRiI2NxYABA3Dw4EG/9n3jjTdwxx13IC0tDR6P54J/8GdnZ2PcuHG44YYbEBsbC4/Hg1deeaXYY62IXMz1BYATJ05g7NixSE5ORkhICBITE9GvXz/k5uZ62+zduxcPP/wwOnfujKioKHg8HnzyySclGm8l303cZ/78+ahbty7Wrl2LrVu3IjU1tSyGUWGZOHEi+vXrhz59+pT1UCoUX375JTp37ow6dergz3/+MxISErBz50589dVX+Mc//oFRo0aV9RDJRbBnzx5MmDABdevWRfPmzY3PXnzxRUepvFWrVqFNmzYYN25ciY63a9cudOzYEZUrV8bEiRORnZ2NyZMn44cffsDatWsRHBxc5P4ZGRnYsGEDWrZsicOHD1+w3aFDh/DYY4+hTp06uOKKK0r8sK9oXOz1PXbsGDp16oRdu3Zh2LBhSE1NxcGDB/H555/j9OnTCA8/V8/ul19+waRJk5CWloamTZtizZo1JR5zqS+o27dvx5dffolFixbh7rvvxvz580s8oQkpDk8++SQqV66MdevWOeqUHjhwoGwGVcrk5uZ6HySXC2fPnrXWlT0fXWMWOHfPGzduXOLjTpw4ETk5OdiwYQPq1KkDAGjVqhW6du2KV155BcOGDSty/3nz5iExMREBAQFFykc1atTA3r17kZCQgPXr16Nly5YlHnNF4mKv7yOPPIIdO3bgm2++QXJysnf7Qw89ZLRr0aIFDh8+jNjYWLz99tu4+eabSzzmUv/Jd/78+YiJicGNN96Ifv36Yf78+Y425/9uP2fOHKSkpCAkJAQtW7bEunXrfB7ju+++Q3x8PK655hpkZ2dfsN3p06cxbtw4pKamIiQkBLVr18bYsWNx+vRpv89nw4YNaNeuHcLCwpCcnIxZs2Y52hw4cAB33nknqlevjtDQUFxxxRV49dVXHe1ycnIwZswY1K5dGyEhIWjQoAEmT55sFG32eDzIycnBq6++Co/HA4/Hg8GDB/s93t8z27ZtQ3p6umMxBYBq1ap5/9/j8WDkyJFYvHgxmjRpgpCQEKSnp2P58uWO/Xbv3o2hQ4eievXq3nb//Oc/jTZ5eXn43//9X7Ro0QKVK1dGREQEOnTogNWrV/scs4hg2LBhCA4OxqJFi7zbX3vtNbRo0QJhYWGIjY3Frbfeip07dxr7Fur8GzZsQMeOHREeHo6//e1vPo95Kdi9ezfuvPNO1KxZEyEhIUhOTsbw4cORl5fnbZOVlYXRo0d7539qaiomTZpkLJbnPxumTZvmfTbMnDnTu9AMGTLE+90o/Gn0fA31k08+gcfjwfbt2/HBBx9422ZmZuLYsWPYtGkTjh075vOcFi5ciB49engf9gDQpUsX1K9fH2+++abP/WvXro2AAN+P4JCQECQkJPhsV1z8fS4VMnXqVCQlJSEsLAydOnXCjz/+aHy+b98+DBkyBLVq1UJISAhq1KiB3r17IzMz09umtK5vVlYW5s6di2HDhiE5ORl5eXkXfK5HRUUhNjbW53j8QkqZhg0byp133ikiIp999pkAkLVr1xpttm/fLgDkyiuvlNTUVJk0aZI888wzEhcXJ7Vq1ZK8vDxv20GDBklERITXXrt2rcTExEjXrl0lNzfXu71Tp07SqVMnr52fny/XX3+9hIeHy+jRo2X27NkycuRIqVSpkvTu3dvneXTq1Elq1qwp1apVk5EjR8r06dOlffv2AkBefvllb7vc3Fxp1KiRBAUFyf333y/Tp0+XDh06CACZNm2at11BQYFce+214vF45K677pLnn39eevbsKQBk9OjR3nbz5s2TkJAQ6dChg8ybN0/mzZsnX375pe8LT+T666+XqKgo+eGHH4psB0CuuOIKqVGjhjz++OMybdo0qVevnoSHh8uhQ4e87fbt2ye1atWS2rVry2OPPSYZGRnSq1cvASBTp071tjt48KDUqFFDHnjgAcnIyJBnnnlGGjRoIEFBQfLtt9962xXO+2effVZERM6ePSsDBw6UkJAQWbJkibfdE088IR6PR2655RaZOXOmTJgwQeLi4qRu3bpy9OhRb7tOnTpJQkKCxMfHy6hRo2T27NmyePHii7uIJWD37t1Ss2ZN73dt1qxZ8uijj0qjRo28483JyZFmzZpJ1apV5W9/+5vMmjVLBg4cKB6PR+677z5vX4XXqHHjxlKvXj15+umnZerUqZKZmSmPPfaYAJBhw4Z5vxvbtm0TkXPPiaSkJBE5d9/mzZsncXFx0rx5c2/b7OxsmTt3rgCQuXPnFnlOu3btEgAyadIkx2d33HGHxMbGFusapaenG8+nC7Fu3Tq/xucLf59Lhde7adOmUrduXZk0aZJMmDBBYmNjJT4+Xvbt2+dt265dO6lcubL8z//8j7z00ksyceJE6dy5s3z66afeNqV1fd9//30BIHPmzJG+fftKYGCgeDweadeunfGd07z11lsCQFavXl1k/xeiVBfU9evXCwBZuXKliJxbRGrVqmV8YUT+exOrVq0qR44c8W5/9913BYC8//773m3nL6j//ve/JTo6Wm688UY5deqU0adeUOfNmycBAQHy+eefG+1mzZolAOSLL74o8lw6deokAGTKlCnebadPn5bmzZtLtWrVvIv+tGnTBIC89tpr3nZ5eXnStm1biYyMlOPHj4uIyOLFiwWAPPHEE8Zx+vXrJx6PR7Zu3erdFhERIYMGDSpyfMTJhx9+KIGBgRIYGCht27aVsWPHyooVK4w/0ETOLajBwcHGNd+4caMAkBkzZni33XnnnVKjRg1jkRURufXWW6Vy5creP+jOnj0rp0+fNtocPXpUqlevLkOHDvVuO39BPXPmjNxyyy0SFhYmK1as8LbJzMyUwMBAefLJJ43+fvjhB6lUqZKxvXCOzpo1q7iXylUGDhwoAQEBsm7dOsdnBQUFIiLy+OOPS0REhGzevNn4/OGHH5bAwED57bffROS/1yg6OloOHDhgtC1qsTl/QS0kKSlJbrzxRmObvw/8wmP961//cnz217/+VQA4nkFFUdoLqr/PpcLrHRYWJrt27fK2/frrrwWA3H///SJybj6f/8fghSit6/vcc89515BWrVrJ/PnzZebMmVK9enWJiYmRPXv2WPe72AW1VH/ynT9/PqpXr47OnTsDOPfT2i233IIFCxYgPz/f0f6WW25BTEyM1+7QoQMA4Ndff3W0Xb16Nbp164brrrsOixYtQkhISJFjeeutt9CoUSM0bNgQhw4d8v679tprvf35olKlSrj77ru9dnBwMO6++24cOHAAGzZsAAAsXboUCQkJ+NOf/uRtFxQUhHvvvRfZ2dn49NNPve0CAwNx7733GscYM2YMRATLli3zOR5SNF27dsWaNWvQq1cvbNy4Ec888wy6deuGxMREvPfee0bbLl26ICUlxWs3a9YM0dHR3rknIli4cCF69uwJETHmULdu3XDs2DF88803AIDAwECvA0VBQQGOHDmCs2fP4uqrr/a2OZ+8vDzcfPPNWLJkCZYuXYrrr7/e+9miRYtQUFCA/v37G8dMSEhAWlqaY96GhIRgyJAh7lzAElBQUIDFixejZ8+euPrqqx2fezweAOe+jx06dEBMTIxxXl26dEF+fj4+++wzY7++ffsiPj7e9fEOHjwYIuJTRjl58iQAWJ8zoaGhRpvyiL/PpUL69OmDxMREr92qVSu0bt0aS5cuBQCEhYUhODgYn3zyCY4ePXrB45bW9S2U+jweDz7++GPcdtttGD58OBYvXoyjR4/ihRdeKPL4JaXUnJLy8/OxYMECdO7cGdu3b/dub926NaZMmYKPP/7YeHAAMH47B+BdXPUNO3XqFG688Ua0aNECb775JipV8n1aW7Zswc8//3zBL6U/Tio1a9ZERESEsa1+/foAzmk9bdq0wY4dO5CWlubQSho1agQA2LFjh/e/NWvWRFRUVJHtyMXRsmVLLFq0CHl5edi4cSPeeecdTJ06Ff369cN3333ndVLRcw84N/8K597BgweRlZWFOXPmYM6cOdZjnT+HXn31VUyZMgWbNm3CmTNnvNvPd5Yo5KmnnkJ2djaWLVvmCKXYsmULRARpaWnWY2rnm8TERJ/ekJeSgwcP4vjx4z5jtrds2YLvv//e7++j7bqVJmFhYQBg1eVOnTpltCmP+PtcKsQ2387XMkNCQjBp0iSMGTMG1atXR5s2bdCjRw8MHDiwRPrvxV7fws969uxp5Clo06YNkpOT8eWXXxZ7TP5QagvqqlWrsHfvXixYsAALFixwfD5//nzHghoYGGjtS85z0gHO3czu3bvj3XffxfLly9GjRw+f4ykoKEDTpk3x3HPPWT+vXbu2zz5IxSU4OBgtW7ZEy5YtUb9+fQwZMgRvvfWW1+Pc19wrdJS54447MGjQIGvbZs2aATjnQDR48GD06dMHf/3rX1GtWjUEBgbiqaeewrZt2xz7devWDcuXL8czzzyDa665xvsXeeFxPR4Pli1bZh2jTnJSnh/q51NQUICuXbti7Nix1s8L/1AtpKzPq0aNGgDOxTBq9u7di9jYWJ+/kl1ujB49Gj179sTixYuxYsUKPProo3jqqaewatUqXHnllcXq62Kvb82aNQEA1atXd3xWrVq1It+iL4ZSW1Dnz5+PatWqWV+1Fy1ahHfeeQezZs0q0RfF4/Fg/vz56N27N26++WbrX/aalJQUbNy4Edddd533Z6fismfPHuTk5BhvqZs3bwYAr0dhUlISvv/+exQUFBh/DW7atMn7eeF/P/roI5w4ccJ4S9XtCs+XuEfhT5G2L++FiI+PR1RUFPLz89GlS5ci27799tuoV68eFi1aZNy7C4WLtWnTBvfccw969OiBm2++Ge+88473V5eUlBSICJKTkx2LTHkkPj4e0dHRDo9QTUpKCrKzs31ey6Ioze9FYmIi4uPjsX79esdna9eudcTBljf8fS4VsmXLFkcfmzdvdmSfSklJwZgxYzBmzBhs2bIFzZs3x5QpU/Daa68Va3wXe31btGgB4Jx3uWbPnj1o2LBhscbjL6WioZ48eRKLFi1Cjx490K9fP8e/kSNH4sSJEw4dqzgUhhW0bNkSPXv2xNq1a4ts379/f+zevRsvvviidbw5OTk+j3n27FnMnj3ba+fl5WH27NmIj4/33tDu3btj3759eOONN4z9ZsyYgcjISHTq1MnbLj8/H88//7xxjKlTp8Lj8eCPf/yjd1tERASysrJ8jo+YrF692vHrBgCvDtSgQQO/+woMDETfvn2xcOFC62JxfjaXwjfJ84/99ddfFxlA3qVLFyxYsADLly/HgAEDvG/EN910EwIDAzFhwgTHuYhIkQkCyoKAgAD06dMH77//vvXhWHgO/fv3x5o1a7BixQpHm6ysLJw9e9bnsQr/sL2Y70Zxwjr69u2LJUuWGOFKH3/8MTZv3mzEMp45cwabNm0q1h9slxp/n0uFLF682Fic1q5di6+//tr7XMrNzfX+FFtISkoKoqKijJ9tS+v6NmjQAFdccQXeffddHDp0yLv9ww8/xM6dO9G1a1efxy8RJXJlKiYLFiwQABd02c/Pz5f4+Hjp2bOniDjDB84HgIwbN85r67CZY8eOSYsWLSQ2NtYIj7CFzXTv3l08Ho/ceuutMmPGDJk2bZrcc889Ehsba/VIPJ/zw2ZGjRolM2bM8IbNzJkzx9uu0D09ODhYxowZIzNmzPB6X57vnp6fny+dO3cWj8cjw4YNkxdeeEF69+7tCJsREenevbtERETIlClT5PXXX5evvvqqyLGSc6Snp0tycrI88MADMmfOHHn++efltttuk8DAQCPkBICMGDHCsX9SUpLhXb1v3z5JSkqS8PBwue+++2T27Nny1FNPyc033ywxMTHedv/85z8FgPTq1Utmz54tDz/8sFSpUkXS09MNz1PbvJ83b553ThTy1FNPCQBp166dPPPMM5KRkSFjx46VtLQ0Y99OnTpJenq6C1fu4ti1a5ckJCQYIWrjx4+X9PR0I2zmqquukkqVKsldd90lGRkZMnnyZO/3++DBgyJS9LMhLy9PqlSpIg0aNJCXXnpJXn/9dfn1119FxH0vXxGR3377TapWrSopKSkyffp0mThxosTExEjTpk0ND9TCMWvP/E8//VQef/xxefzxx6VatWpSt25dr31+qImIyIwZM+Txxx+X4cOHCwC56aabvG2zsrKKPX5/n0u2sJnHHntMYmNjpWrVql5v2W+//VZiY2PlnnvukenTp8vMmTOla9euAkDefvvtMrm+q1atksDAQGnQoIE899xzMm7cOImKipL69evLiRMnjLaF1/LWW28VADJ06FDvtuJQKgtqz549JTQ0VHJyci7YZvDgwRIUFCSHDh26qAVVROTQoUPSuHFjSUhIkC1btoiIc0EVOfcFnDRpkqSnp0tISIjExMRIixYtZMKECXLs2LEiz6nwYbV+/Xpp27athIaGSlJSkjz//POOtvv375chQ4ZIXFycBAcHS9OmTa0T6sSJE3L//fdLzZo1JSgoyPuALAwtKGTTpk3SsWNHCQsLs04kYmfZsmUydOhQadiwoURGRkpwcLCkpqbKqFGjZP/+/d52/i6oIufu7YgRI6R27doSFBQkCQkJct111xl/VBUUFMjEiRMlKSlJQkJC5Morr5QlS5Y4HvIXmvczZ84UAPLggw96ty1cuFDat28vEREREhERIQ0bNpQRI0bIL7/84m1TXhZUEZEdO3bIwIEDJT4+XkJCQqRevXoyYsQII5zoxIkT8sgjj0hqaqoEBwdLXFyctGvXTiZPnuwNbSrq2SByLrSucePGUqlSJePBfSkWVBGRH3/80RvPXqVKFbn99tuN2Mzzx6znzrhx4wSA9d/5z7jCsV6o7fbt273tZsyYIQBk+fLlPsfuz3Pp/Os9ZcoUqV27tjcOfuPGjd52hw4dkhEjRkjDhg0lIiJCKleuLK1bt5Y333zT6K80r6+IyMqVK6VNmzYSGhoqsbGxMmDAANm7d6+j3YWubXHfOT3/rzNCCCEVnP79+yMzM9On5EUuDWWSHJ8QQoi7iAg++eSTYjsAEffgGyohhBDiAhW+wDghhBBSHuCCSgghhLgAF1RCCCHEBbigEkIIIS7ABZUQQghxAb/DZpg/9vKmrJy9dbULN+aZP+dC5/bSoayusydKzaMgSyP9OqFrDRQo+wyc6DanfHxu28apWGzK6/eXb6iEEEKIC3BBJYQQQlyAmZJImaJ/4vXnJ19dRFv//HN+Ae8LtSGXOboKZISlTb6ydTU8/fPtfyx96CI4eurZprP++Vn3YfuZmFQI+IZKCCGEuAAXVEIIIcQFuKASQgghLsAFlRBCCHEBOiWRMkU7C+m4VAAIDDQDBAsKTK+Ns2dNrw6bA5J2dtJtbM5QdGSqwOQpu6qlTYKyTyg7U9k2Z6FIZWsHI9sTlk5Ily18QyWEEEJcgAsqIYQQ4gJcUAkhhBAXoIZKyhStU/qjW+rEDXofnfgBAPLzzSj+SpXMqW87rt6HVCBOKvu4pU01ZevEDVrrTLX0cUjZtZSttVzbPuSygW+ohBBCiAtwQSWEEEJcgAsqIYQQ4gLUUEmZ4k8yfB136iumVLe/0LbijoNUIPSTLdjSRuuqUcrWWmeOpQ/dJt6P42ptllw28A2VEEIIcQEuqIQQQogLcEElhBBCXIAaKin3+JN393z8iR/1pamWZ0JDQw371CldCZs4nmy2eNBsZYf46DPTj+PuV3ZFSgfdXdlLy2QUFRq+oRJCCCEuwAWVEEIIcQEuqIQQQogLcEElhBBCXIBOSaTco52Qipvo4XJDJ/YPCwtztDl5UmeH/52hnZBsU0JftsPKDlf2aUsfeltFnno1lX2Tpc2i0hhIxYVvqIQQQogLcEElhBBCXIALKiGEEOIC1FBLkcDAQMc2rQf6o/+FhJgR6KdPm0JOWlqaYW/ZssXfIZY6/iRtCAgo+u8+3YetfV6eLbK/YqILrGtN9VIRH29mfj948GCpHLdE6K9RFUubysrW00bny4ix9PFVMcZU3tmm7CBnk1Bl+5NSpJWy1yp7grLH+dFneYVvqIQQQogLcEElhBBCXIALKiGEEOICHvEzaO9yL8Csz89X7CMAJCYmGnbbtm0Ne9myZYadk2OrUOw+Dz30kGFPmjTJ5z5lFbup9U6bHqi1Z538Xo/ddi7+JMwvL0RHRxv2rbfeatgLFy407MOHdQDlpUGPY8GCBT73Kat55QlXz6v6lkbVlL1H2WeUnWvpY1exhuUaWsvUdpZln5HKfv5ltUHfzpXFHFQJ0TPEn5WmvMaa8w2VEEIIcQEuqIQQQogLcEElhBBCXIALKiGEEOICTOxwAWxOSJoOHToYduvWrQ27Zk0z2/T06dMvfmAAqlUzvSm6detm2CdOnHDlOGWBP4kdtEOCvlf+3LuSjqWocbiFnlfa2U3f/yeeeMKV44aGmq4tXbp0MewK5Zioh+rMqeJM9qCdkA4pO8vSh+7XH983nXRf91GCr2+WH20c3wp9fq2V7ZJTknaGqq3sp9w5TLmAb6iEEEKIC3BBJYQQQlyACyohhBDiAtRQ/x86ecDZs2cNu2XLlo59GjVqZNj79+83bJ2k/p133nH0ceTIEcPWxaJ37Njh2Kdq1aqGrRMB7NpVRtHmJaAkOmRJCoprHdYfndWXduuGhqrnCAA0bdrUsH/++WfDTklJMez33nvP0ceePWaWAn2+mzZtcuxTp04dw65c2cwer/ss15xVts58ADhFxRBlaz3U9vqhE+wf9zEuAIhXtq4F74eGmqDsTGXbEszrPP7hZv4X5F6lGmixE0DaTtMeoD6/0XLcucr+TdnluMRCseEbKiGEEOICXFAJIYQQF+CCSgghhLjA71JDtRWg1pppRESEYffr18+xjy7sreP4oqKiDNufGEvdJj093bHPzp2mkHH06FHDLq2C026gz992b3zpnfp8/UmEr6+z7bi++tVzxnZ/9T76OAMHDnTsc+qUWbZZH0fr7LrgvO04emw61hVw+gDosesC4+U6LjXahw0Ax3z0kahsWyyrnja6z0jLPqnK3q9sfVktNTUys037evX5u5bD6llyk7Jf0+JmJ0snSkM9oD7+s2WXb5Ut+l7oR9xGSycVBL6hEkIIIS7ABZUQQghxAS6ohBBCiAuUO7HNV4yhTevyFR/oq0C1jXvuucewtb4EOLWupKQkw9aaqq0PPTatF9qKkufl5Rm2jkPVmprWgy/Ub3nAn9hOX5qqrQ99nfU8Cw4OduzjKw61JNrtnXfeadi7d+92tDl+3AxmbNiwoWFrbX7Lli2OPvRYtO567JhTQNTzSseh6vms5x3gHHuZoXVIHetpa3NU2Tq3r7YBZ0yp/qrVsuxTU9k67lQ/4qpY+lAaaiP1sXM2A1cqe5lu0MQ00xbqBkALZe9TtjOqGvhR2XnqONDxr7bA1AoSrMo3VEIIIcQFuKASQgghLsAFlRBCCHEBLqiEEEKIC5SqU5I/Sc19OaX4k9S8JE5If/rTnww7IcFMP/3ttzo82emUUqVKFcM+fPiwYetE+AAQFxdn2NrhRJ+LDe08Ex5uVjC2JWD/7rvvfPZbFtjuv68kDP7Mq+IWKbehnb20Y48t0YFOCFKvXj3D/uKLLxz7BAUFGXatWqZni07s8dtvOiLfuY+eZ7Z5pZ2StCOTLsrQuHFjRx9ff/21Y1uZoF8Vci1tdKFv7VAUBN9EKVsn5bflvtBt9NdzlbItif3rKfstZd9qOax++qxXnkzVPjFtnfgBAD5T9ho9BWznG6PsVsrWGfW3W/o4bNlWDuEbKiGEEOICXFAJIYQQF+CCSgghhLhAqWqoJSkErW2bHqr79aWZDh061LGtfv36hq11Kq0fAU7NTGtOOmhf66OAU7vLzTXFHh1Mbzuur+varVs3x7aKpKEWt7C3P0UI9L2yaah6my6GoPvUSRsAp369bds2w65ZU0f5+046oROEVKtWzdGHHtuJE2b2gMhIZ9Z2rav6SobRs2dPRx9ffaXLWJcReco+ZWlzWtk6+YPWOp35UZxFynWSAq3TAs5k95uVrW+nxY3iV3U+LVRSijWWwzpmuNqnh/p4iaUPR34FrW0mW3bS55OkbP1ap7NHAMCnlm3lEL6hEkIIIS7ABZUQQghxAS6ohBBCiAu4qqHaEtefj9a+bFqX1q38iQ/UaF3qppvMiCqtnwHOBONaY7IVcda6qo7j0+er40NtaP1X63a2NjrRvb5mf/jDH3wet6zwR//2peX5sm39+tJDAWdh78REs+J0jx6m6mSbV99//71hax3dNieqV69u2LoIg0bHmALOsfvS6gHnNdKF6/XnnTo5K1D74ydRKmj9U1fCBny/TlRRtu3U9GXU2eIrw8mvytZTQD9qLI/Atkr/9CXLAsAJPU2U/qlP5T862BUAdC0H7eKxx7KPLiCwXtla77bpsNmWbeUQvqESQgghLsAFlRBCCHEBLqiEEEKIC3BBJYQQQlzAb6ckfxLOF9eByB8Hhvh4U9GuW7euo02DBg0Mu0aNGoatnYWOHz/u6EMnto+OjjZsnbAccDoq6fNPSjIjmG19ZGVlGfaZM2eK7BNwOtCcPGlGpOt7pYP6ASA9Pd2xrSzwlbQe8J2owx9nN31N9BxJSUlx7JOammrY2vlHO/boe2nbJzY21udY9TXRDkbNmzc3bJ34AQD27t1r2NoJy58CAnre6GIQhw4dcvTRpEkTx7YyQfvyOS+R8+mnnWN2KtvpcwZoR586yq4FJzrRwU/K1o5MW51daKejw2ps1XWSCgDh6nbpJgva6B2cfUQqh6ps7eyVCCd6qu3wcZxfLH349ucsF/ANlRBCCHEBLqiEEEKIC3BBJYQQQlzAbw3VnyLdOiBda4gRERFF2oAzOD452YzytQXCa90xO9uMAtbaUOXKzmhrfVytW9mOqzU0rVNpbUvrWrax6OPo4HrAmXQiJsas4KsTPehi6YA92X9Z4M+80jp6nTqmUKWvh9YpAedc00nrbfdXJ1TQ2rseu634ge5XzxHbPlqL1Rq5Ppft250VmbUPgJ6Lhw87KzZrPwLtr6DnlZ53QPmZV45kCJYC1fqOa4lUS6on6lqOo/XQ/cp2ZJOHM/mBrvytNNUgi2vKYZX8IUoJonrsgDNvv5aIj6vHU6TWOuG8RqHquHEWvXeTTmTRVNlfKttSDMC6rRzCN1RCCCHEBbigEkIIIS7ABZUQQghxgRInx+/SpYtjm05Kr3VIrYXp2EDAqUvpPmwxlVpD05qhjvWzJbrXWqXWXf0pyKw1Jq3lHjt2zNGHrTi0L/RYdayq1oNt56uva1mh740t4bqOGdUxlPoa2vRQfb46Nlnbtn70/NXjsM1nXQxcn69tXmkdUmu3eh7Z9FB9TfT52+7/vn1mZnd9TfRYbQUFtD9DmaHcMxKdXz2HhrpL2Y6yFLZYVq1/RivbEg/q0HN1OK/qIybL2UULNTh9N7+1HPZj1W+YDsdXFyANTrYpW+exd3prAJWVBrxzo2nrUNazznB95wmWU/iGSgghhLgAF1RCCCHEBbigEkIIIS7gt4Z6/fXXG/add97paLNp0ybD1nGXWv+0aTBat/FVXNrWr4650xqjLfZP96t1SFtOXZ2bV2u3Oi63cePGjj70WH0VaQecWq3W+nT8pNZyAeDAAVvF5dLnuuuuM+whQ4Y42vz0kxmYt2ePGcinNWXb+WptT+eltemfek7oNvo669hPwHk/dQypPzl1dTyozg98xRVXOPrQ/er411q1nElmdVy11kz1NbRpt1ozLitClWZqe9BpDVVnIdZnt+8bZx9aIhWlD8IZqotQpbvqqOkrlW2LKdUFxfVYbdKt5mQLtUHFzH5rGXu0Or8G6nObhqoLlycpW9dkP2WR4fVlLa/wDZUQQghxAS6ohBBCiAtwQSWEEEJcgAsqIYQQ4gJ+OyWtXbvWsNu00dVogaZNzazHf/jDH4rs0xZcrh2Mjhw5UqQNOAPdtaOPdi6xJfDWRcq1o4/N4UQ7fmjnkO+//96wMzMzHX3oBBk6CYM/Rdj1ddy9e7dh2wqq2xyzyoJ169YZdqtWrRxtdDH09u3bF/s4el5pRyabg41OUq+d0PS9sSWL1wW3tVOSThYBOJ2S6tevb9hbtmwx7J9//tnRxzXXXOPYdj627552vNO2djiyJVmxfU/KglPKtuSXd2zL8tGnI9EDnLWzoXwmg5yPK0d+CO2Do3PJ276pusC4/oYXOL9GgJ5qHyi7t7KXOrvQaUj0G5kth30NZesE+9ppyZmGBjjt9EUtl/ANlRBCCHEBLqiEEEKIC3BBJYQQQlzAI/6IdLAnVPCFDgxv3bq1YWvdEgDatWtn2Fpjsmk0WpfSY9WnaEvSoLVZnaTio48+cuyzdKkpMuhAf3947733DFsXzz50SGfOdmpX2tb6mA7qB4AHH3zQsG3JEEoDrRfaElvo+6X17bZt2xq21hwBp+bvz7zSerYeh55ntmLpOgnHtm1mevFVq1Y59tFzQt8/f+bzokWLDFv7DdjmlfZF0PNKH8d2vo8++qhh62QRpYUnUj2vKlsaZZlmqBrqKS1eWr4iVdTTUyvTtqdmbWXrRAdHlW1769mg7NN6yluSMiBT2Vqs1I8JS44OrYfermxb/QBfumuWsrWGDAAr9D7+LVulDt9QCSGEEBfggkoIIYS4ABdUQgghxAUuqYZKKg5+TgPX8UdD1dv80fIqMjoJv6+CCeWmqLeFsppXDg1VZ6AHnAGeWrzUMaS2QNTyii2Ys6aytduAnkY/odxSVvPKF3xDJYQQQlyACyohhBDiAlxQCSGEEBfggkoIIYS4gN/J8Qm5FGhnt0qVnFNSO+WcPHnyko7JTfT56QT72gHJnz7KsxNSuUFnYK9raVNN2QsvzVAuCTpRRUNlJ1j20fk/dBYGnVEh1NJH8XPX/K7gGyohhBDiAlxQCSGEEBfggkoIIYS4ABM7EABlFyitNUSbhuorGbzWWMuzxqi/R/5oqLqNvh62xBb+JNAvDcossUO8el6lWBppPfCAsnUyiP9c3JguKVoztmmoQcquruwcZe+19KGTW1gKqJcGTOxACCGEXMZwQSWEEEJcgAsqIYQQ4gKMQyXlCpseqPU/rbP6KvwNlB/NRY9DF4P3Zx+NTR8tL+dbbrDpgceUXUvZWh/UlbIBa9HxMkGHZm+3tNEaqt5Hy/m22vCMQy0SvqESQgghLsAFlRBCCHEBLqiEEEKICzAOlQAoP3GotnH4KjCu56atj8tJU/Tnu1hezrfM4lBj1TWySdW6wPgJZWsPE1sK6ctJU9QasW2a5Snbn6LrWpt1ukkUm/IyvzV8QyWEEEJcgAsqIYQQ4gJcUAkhhBAX4IJKCCGEuACdkgiAMnQe4bwqN/jj3FVcymxeBal5ZasNoLdpJyT9ednUF6j46ELlLjhy0SmJEEIIuYzhgkoIIYS4ABdUQgghxAX81lAJIYQQcmH4hkoIIYS4ABdUQgghxAW4oBJCCCEuwAWVEEIIcQEuqIQQQogLcEElhBBCXIALKiGEEOICXFAJIYQQF+CCSgghhLjA/w9xHpwR17iCsAAAAABJRU5ErkJggg==",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "TZPR4_b68hex",
- "outputId": "bce7a55d-2a51-4315-b7b8-a3bf513b1cab"
- }
+ "source": [
+ "adversarial_viz(hkr_fmodel, images, advs, class_mapping)"
+ ]
}
],
"metadata": {
@@ -955,8 +1137,9 @@
"hash": "85932723c17c3a18b32bfe2b34edfe80dfe7f67e8f24e1ef8c8aa8c563233210"
},
"kernelspec": {
- "name": "python3",
- "display_name": "Python 3.8.10 64-bit ('tf26': venv)"
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -968,7 +1151,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.10"
+ "version": "3.10.12"
}
},
"nbformat": 4,