-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
282 lines (261 loc) · 8.68 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import json
import re
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import requests
from bs4 import BeautifulSoup
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from data.mongo_db import get_data, upload_data
moh_link = "https://www.mohfw.gov.in/"
url_state = "https://api.covid19india.org/state_district_wise.json"
data_data = "https://api.covid19india.org/data.json"
moh_data_url = "https://www.mohfw.gov.in/data/datanew.json"
class COVID19India(object):
"""
Covid19 India data module
"""
def __init__(self):
self.moh_url = moh_link # MOHFW website link
self.moh_data_url = moh_data_url # MOHFW data link
self.url_state = url_state # Districtwise data
self.data_url = data_data # All India data ==> Statewise data, test data, timeseries data etc
self.request_timeout = 120
self.session = requests.Session()
retries = Retry(
total=5, backoff_factor=0.5, status_forcelist=[502, 503, 504]
)
self.session.mount("http://", HTTPAdapter(max_retries=retries))
@staticmethod
def __request(url):
"""
Requests get method to extract data
:param url: Link to data api or website
:return: api/link content
"""
content = requests.get(url, verify=False).content.decode("utf-8")
return content
def moh_data(self, save=False):
"""
Get lasted data from Ministry of Health and Family Welfare | GOI
:param save: (bool)
:return: (DataFrame) Statewise data
"""
response = self.session.get(
self.moh_data_url, timeout=self.request_timeout
)
data = response.json()
for i, dic in enumerate(data):
if int(dic["new_positive"]) < int(dic["new_active"]):
data[i]["new_positive"] = (
int(dic["new_active"])
+ int(dic["new_cured"])
+ int(dic["new_death"])
)
data = [
[
dic["state_name"],
int(dic["new_positive"]),
int(dic["new_cured"]),
int(dic["new_death"]),
]
for dic in data
]
df = pd.DataFrame(
data=data,
columns=[
"Name of State / UT",
"Total Confirmed cases",
"Cured/Discharged/Migrated",
"Death",
],
)
df = df.sort_values("Total Confirmed cases", ascending=False)
df = df.reset_index(drop=True)
df.iloc[0, 0] = "Total"
df["Name of State / UT"] = [
re.findall("[a-zA-Z ]+", x)[0] for x in df["Name of State / UT"]
]
if save is True:
date = pd.to_datetime(
self.last_update().split(":")[0].split(",")[0]
).strftime("%Y.%m.%d")
upload_data(df, date)
return df
def last_update(self):
"""
Last data update on MoHFW | GOI website
:return: (str) Last Update date and time
"""
content = self.__request(self.moh_url)
soup = BeautifulSoup(content, "html.parser")
text = soup.find_all("div", attrs={"class": "status-update"})[
0
].text.strip()
text = text.split(" : ")[-1]
return text
def change_cal(self):
"""
Calculation changes in cases from previous day (MoHFW data)
:return: (DataFrame)
"""
date0 = pd.to_datetime(
self.last_update().split(":")[0].split(",")[0]
).strftime(
"%Y.%m.%d"
) # Last Update
date = (pd.to_datetime(date0) - timedelta(days=1)).strftime(
"%Y.%m.%d"
) # Day before last update
a = get_data(date0)
if a is not None:
b = get_data(id_=date)
else:
date0 = (datetime.today() - timedelta(days=1)).strftime("%Y.%m.%d")
date = (datetime.today() - timedelta(days=2)).strftime("%Y.%m.%d")
a = get_data(date0)
b = get_data(date)
print(date0, date)
lst = []
for name in a["Name of State / UT"].values:
if name in b["Name of State / UT"].values:
c = (
(a[a["Name of State / UT"] == name])
.values[0][1:]
.astype(np.int64)
)
d = (
(b[b["Name of State / UT"] == name])
.values[0][1:]
.astype(np.int64)
)
lst.append([name] + list(abs(c - d)))
else:
c = list((a[a["Name of State / UT"] == name]).values[0])
lst.append(c)
df2 = pd.DataFrame(data=lst, columns=a.columns)
return df2
def state_district_data(self):
"""
Districtwise data of each state
:return: (DataFrame) districtwise data of each state
"""
content = self.__request(self.url_state)
state_data = json.loads(content)
key1 = state_data.keys()
Values = []
for k in key1:
key2 = state_data[k]["districtData"].keys()
for k2 in key2:
c = state_data[k]["districtData"][k2]
try:
v = [
k,
k2,
c.get("confirmed"),
c.get("active"),
c.get("deceased"),
c.get("recovered"),
]
except:
v = [k, k2, c.get("confirmed")]
Values.append(v)
try:
state_data = pd.DataFrame(
Values,
columns=[
"State_UT",
"District",
"Confirmed",
"Active",
"Deaths",
"Recovered",
],
)
except:
state_data = pd.DataFrame(
Values, columns=["State_UT", "District", "Confirmed"]
)
state_data = state_data[state_data["Confirmed"] >= 0]
return state_data
def StateWise_data(self):
"""
Statewise data (total cases and new cases data)
:return: (DataFrames) Statewise data (total cases and new cases data)
"""
content = self.__request(self.data_url)
data = json.loads(content)
data_state = [
[
v["state"],
v["confirmed"],
v["active"],
v["recovered"],
v["deaths"],
v["lastupdatedtime"],
]
for v in data["statewise"]
]
data_state1 = [
[
v["state"],
v["deltaconfirmed"],
v["deltarecovered"],
v["deltadeaths"],
v["lastupdatedtime"],
]
for v in data["statewise"]
]
states = pd.DataFrame(
data=data_state,
columns=[
"state_ut",
"confirmed",
"active",
"recovered",
"deaths",
"last_updated",
],
)
states_new = pd.DataFrame(
data=data_state1,
columns=[
"state_ut",
"confirmed",
"recovered",
"deaths",
"last_updated",
],
)
return states, states_new
def timeseries_data(self):
"""
TimeSeries covid19 data of India
:return: (DataFrame) TimeSeries covid19 data of India
"""
content = self.__request(self.data_url)
data = json.loads(content)
tm = [list(v.values()) for v in data["cases_time_series"]]
tm = pd.DataFrame(tm, columns=data["cases_time_series"][0].keys())
return tm
def current_update(self):
"""
Latest covid19 cases data
:return: (json) Latest covid19 cases data
"""
content = self.__request(self.data_url)
data = json.loads(content)
return data
def tests(self):
"""
Test statistics
:return: (DataFrame) Test counts and results by day
"""
content = self.__request(self.data_url)
data = json.loads(content)
values = [list(v.values())[-5:] for v in data["tested"]]
for v in data["tested"]:
values.append(list(v.values())[-5:])
data = pd.DataFrame(values, columns=list(data["tested"][0].keys())[-5:])
return data