|
| 1 | +package DataMining_CABDDCC; |
| 2 | + |
| 3 | +import java.io.BufferedReader; |
| 4 | +import java.io.File; |
| 5 | +import java.io.FileReader; |
| 6 | +import java.io.IOException; |
| 7 | +import java.text.MessageFormat; |
| 8 | +import java.util.ArrayList; |
| 9 | + |
| 10 | +/** |
| 11 | + * 基于连通图的分裂聚类算法 |
| 12 | + * |
| 13 | + * @author lyq |
| 14 | + * |
| 15 | + */ |
| 16 | +public class CABDDCCTool { |
| 17 | + // 测试数据点数据 |
| 18 | + private String filePath; |
| 19 | + // 连通图距离阈值l |
| 20 | + private int length; |
| 21 | + // 原始坐标点 |
| 22 | + public static ArrayList<Point> totalPoints; |
| 23 | + // 聚类结果坐标点集合 |
| 24 | + private ArrayList<ArrayList<Point>> resultClusters; |
| 25 | + // 连通图 |
| 26 | + private Graph graph; |
| 27 | + |
| 28 | + public CABDDCCTool(String filePath, int length) { |
| 29 | + this.filePath = filePath; |
| 30 | + this.length = length; |
| 31 | + |
| 32 | + readDataFile(); |
| 33 | + } |
| 34 | + |
| 35 | + /** |
| 36 | + * 从文件中读取数据 |
| 37 | + */ |
| 38 | + public void readDataFile() { |
| 39 | + File file = new File(filePath); |
| 40 | + ArrayList<String[]> dataArray = new ArrayList<String[]>(); |
| 41 | + |
| 42 | + try { |
| 43 | + BufferedReader in = new BufferedReader(new FileReader(file)); |
| 44 | + String str; |
| 45 | + String[] tempArray; |
| 46 | + while ((str = in.readLine()) != null) { |
| 47 | + tempArray = str.split(" "); |
| 48 | + dataArray.add(tempArray); |
| 49 | + } |
| 50 | + in.close(); |
| 51 | + } catch (IOException e) { |
| 52 | + e.getStackTrace(); |
| 53 | + } |
| 54 | + |
| 55 | + Point p; |
| 56 | + totalPoints = new ArrayList<>(); |
| 57 | + for (String[] array : dataArray) { |
| 58 | + p = new Point(array[0], array[1], array[2]); |
| 59 | + totalPoints.add(p); |
| 60 | + } |
| 61 | + |
| 62 | + // 用边和点构造图 |
| 63 | + graph = new Graph(null, totalPoints); |
| 64 | + } |
| 65 | + |
| 66 | + /** |
| 67 | + * 分裂连通图得到聚类 |
| 68 | + */ |
| 69 | + public void splitCluster() { |
| 70 | + // 获取形成连通子图 |
| 71 | + ArrayList<Graph> subGraphs; |
| 72 | + ArrayList<ArrayList<Point>> pointList; |
| 73 | + resultClusters = new ArrayList<>(); |
| 74 | + |
| 75 | + subGraphs = graph.splitGraphByLength(length); |
| 76 | + |
| 77 | + for (Graph g : subGraphs) { |
| 78 | + // 获取每个连通子图分裂后的聚类结果 |
| 79 | + pointList = g.getClusterByDivding(); |
| 80 | + resultClusters.addAll(pointList); |
| 81 | + } |
| 82 | + |
| 83 | + printResultCluster(); |
| 84 | + } |
| 85 | + |
| 86 | + /** |
| 87 | + * 输出结果聚簇 |
| 88 | + */ |
| 89 | + private void printResultCluster() { |
| 90 | + int i = 1; |
| 91 | + for (ArrayList<Point> cluster : resultClusters) { |
| 92 | + System.out.print("聚簇" + i + ":"); |
| 93 | + for (Point p : cluster){ |
| 94 | + System.out.print(MessageFormat.format("({0}, {1}) ", p.x, p.y)); |
| 95 | + } |
| 96 | + System.out.println(); |
| 97 | + i++; |
| 98 | + } |
| 99 | + |
| 100 | + } |
| 101 | + |
| 102 | +} |
0 commit comments