forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreverse2original.py
175 lines (134 loc) · 6.5 KB
/
reverse2original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import cv2
import numpy as np
# import time
import torch
from torch.nn import functional as F
import torch.nn as nn
def encode_segmentation_rgb(segmentation, no_neck=True):
parse = segmentation
face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14]
mouth_id = 11
# hair_id = 17
face_map = np.zeros([parse.shape[0], parse.shape[1]])
mouth_map = np.zeros([parse.shape[0], parse.shape[1]])
# hair_map = np.zeros([parse.shape[0], parse.shape[1]])
for valid_id in face_part_ids:
valid_index = np.where(parse==valid_id)
face_map[valid_index] = 255
valid_index = np.where(parse==mouth_id)
mouth_map[valid_index] = 255
# valid_index = np.where(parse==hair_id)
# hair_map[valid_index] = 255
#return np.stack([face_map, mouth_map,hair_map], axis=2)
return np.stack([face_map, mouth_map], axis=2)
class SoftErosion(nn.Module):
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
super(SoftErosion, self).__init__()
r = kernel_size // 2
self.padding = r
self.iterations = iterations
self.threshold = threshold
# Create kernel
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
kernel = dist.max() - dist
kernel /= kernel.sum()
kernel = kernel.view(1, 1, *kernel.shape)
self.register_buffer('weight', kernel)
def forward(self, x):
x = x.float()
for i in range(self.iterations - 1):
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)
mask = x >= self.threshold
x[mask] = 1.0
x[~mask] /= x[~mask].max()
return x, mask
def postprocess(swapped_face, target, target_mask,smooth_mask):
# target_mask = cv2.resize(target_mask, (self.size, self.size))
mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda()
face_mask_tensor = mask_tensor[0] + mask_tensor[1]
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0))
soft_face_mask_tensor.squeeze_()
soft_face_mask = soft_face_mask_tensor.cpu().numpy()
soft_face_mask = soft_face_mask[:, :, np.newaxis]
result = swapped_face * soft_face_mask + target * (1 - soft_face_mask)
result = result[:,:,::-1]# .astype(np.uint8)
return result
def reverse2wholeimage(b_align_crop_tenor_list,swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '', \
no_simswaplogo = False,pasring_model =None,norm = None, use_mask = False):
target_image_list = []
img_mask_list = []
if use_mask:
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda()
else:
pass
# print(len(swaped_imgs))
# print(mats)
# print(len(b_align_crop_tenor_list))
for swaped_img, mat ,source_img in zip(swaped_imgs, mats,b_align_crop_tenor_list):
swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0))
img_white = np.full((crop_size,crop_size), 255, dtype=float)
# inverse the Affine transformation matrix
mat_rev = np.zeros([2,3])
div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0]
mat_rev[0][0] = mat[1][1]/div1
mat_rev[0][1] = -mat[0][1]/div1
mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1
div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1]
mat_rev[1][0] = mat[1][0]/div2
mat_rev[1][1] = -mat[0][0]/div2
mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2
orisize = (oriimg.shape[1], oriimg.shape[0])
if use_mask:
source_img_norm = norm(source_img)
source_img_512 = F.interpolate(source_img_norm,size=(512,512))
out = pasring_model(source_img_512)[0]
parsing = out.squeeze(0).detach().cpu().numpy().argmax(0)
vis_parsing_anno = parsing.copy().astype(np.uint8)
tgt_mask = encode_segmentation_rgb(vis_parsing_anno)
if tgt_mask.sum() >= 5000:
# face_mask_tensor = tgt_mask[...,0] + tgt_mask[...,1]
target_mask = cv2.resize(tgt_mask, (crop_size, crop_size))
# print(source_img)
target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask)
target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize)
# target_image_parsing = cv2.warpAffine(swaped_img, mat_rev, orisize)
else:
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1]
else:
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)
# source_image = cv2.warpAffine(source_img, mat_rev, orisize)
img_white = cv2.warpAffine(img_white, mat_rev, orisize)
img_white[img_white>20] =255
img_mask = img_white
# if use_mask:
# kernel = np.ones((40,40),np.uint8)
# img_mask = cv2.erode(img_mask,kernel,iterations = 1)
# else:
kernel = np.ones((40,40),np.uint8)
img_mask = cv2.erode(img_mask,kernel,iterations = 1)
kernel_size = (20, 20)
blur_size = tuple(2*i+1 for i in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
# kernel = np.ones((10,10),np.uint8)
# img_mask = cv2.erode(img_mask,kernel,iterations = 1)
img_mask /= 255
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
# pasing mask
# target_image_parsing = postprocess(target_image, source_image, tgt_mask)
if use_mask:
target_image = np.array(target_image, dtype=np.float) * 255
else:
target_image = np.array(target_image, dtype=np.float)[..., ::-1] * 255
img_mask_list.append(img_mask)
target_image_list.append(target_image)
# target_image /= 255
# target_image = 0
img = np.array(oriimg, dtype=np.float)
for img_mask, target_image in zip(img_mask_list, target_image_list):
img = img_mask * target_image + (1-img_mask) * img
final_img = img.astype(np.uint8)
if not no_simswaplogo:
final_img = logoclass.apply_frames(final_img)
cv2.imwrite(save_path, final_img)