-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparamter_tuning.py
148 lines (100 loc) · 5.54 KB
/
paramter_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import multiprocessing
import numpy as np
import pandas as pd
from sklearn import linear_model
from sklearn.cluster import KMeans
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import elm
def data():
df = pd.read_sas('data/data1.sas7bdat')
df2 = pd.read_sas('data/data2.sas7bdat')
df3 = pd.read_sas('data/data3.sas7bdat')
df.drop('LanguageName', 1, inplace=True)
df['CountryName'] = df['CountryName'].astype('str')
df['Gender'] = df['Gender'].astype('str')
df['CountryName'] = df['CountryName'].str.replace(r"[b\'.COM]", '')
df['Gender'] = df['Gender'].str.replace(r"[b\']", '')
df.dropna()
date_df = df2.sort_values('Date').groupby('UserID')['Date'].agg(['first', 'last']).reset_index()
date_df['Duration'] = date_df['last'] - date_df['first']
date_df['Duration_Days'] = date_df['Duration'].dt.days
date_df.drop('first', 1, inplace=True)
date_df.drop('last', 1, inplace=True)
date_df.drop('Duration', 1, inplace=True)
date_df = pd.merge(left=date_df, right=df2, left_on='UserID', right_on='UserID')
date_df.drop('Date', 1, inplace=True)
merged_inner = pd.merge(left=df, right=date_df, left_on='USERID', right_on='UserID')
df3['AtRisk'] = np.where(df3['RGsumevents'] != 0, 1, 0)
df3.drop(df3.columns[2:6], axis=1, inplace=True)
features = pd.merge(merged_inner, df3, on='UserID', how='left')
features.loc[features.AtRisk != 1, 'AtRisk'] = 0
features['AtRisk'] = features['AtRisk'].astype(np.int64)
features.loc[features.RGsumevents.isnull(), 'RGsumevents'] = 0
features['RGsumevents'] = features['RGsumevents'].astype(np.int64)
features.drop(features.columns[5:8], axis=1, inplace=True)
aggregation_functions = {'CountryName': 'first', 'Gender': 'first',
'YearofBirth': 'first', 'Turnover': 'sum', 'Hold': 'sum',
'NumberofBets': 'sum',
'Duration_Days': 'first', 'RGsumevents': 'first', 'AtRisk': 'first'}
features = features.groupby(features['USERID'], as_index=False).aggregate(aggregation_functions)
features['Profit'] = np.where((features['Turnover'] - features['Hold']) > 0, 1, 0)
features = pd.get_dummies(features, columns=["CountryName", "Gender"])
# Correct Country Names
features.rename(columns={'CountryName_Bosnia and Herzego': 'CountryName_BosniaHerzegovina',
'CountryName_FYR acedonia': 'CountryName_Macedonia',
'CountryName_Leanon': 'CountryName_Lebanon',
'CountryName_Luxemourg': 'CountryName_Luxembourg',
'CountryName_New Zealand': 'CountryName_NewZealand',
'CountryName_Russian Federation': 'CountryName_RussianFederation',
'CountryName_alta': 'CountryName_Malta',
'CountryName_anada': 'CountryName_Canada',
'CountryName_exicoX': 'CountryName_Mexico',
'CountryName_orocco': 'CountryName_Morocco',
'CountryName_roatia': 'CountryName_Croatia',
'CountryName_yprus': 'CountryName_Cyprus',
'CountryName_zech Repulic': 'CountryName_CzechRepulic'}, inplace=True)
# Reorder Columns
cols = list(features.columns.values)
cols.pop(cols.index('Profit'))
cols.pop(cols.index('AtRisk'))
features = features[cols + ['Profit', 'AtRisk']]
features['USERID'] = features['USERID'].astype(np.int32)
features['NumberofBets'] = features['NumberofBets'].astype(np.int32)
features.drop('YearofBirth', 1, inplace=True)
features.drop('RGsumevents', 1, inplace=True)
features = features[features.NumberofBets != 0]
features = features[features.Duration_Days > 5]
features.dropna(inplace=True)
features.drop_duplicates(inplace=True)
labels = np.array(features['AtRisk'])
features.drop('AtRisk', axis=1, inplace=True)
df_list = list(features.columns)
if 'USERID' in df_list: df_list.remove('USERID')
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
X_train.drop('USERID', 1, inplace=True)
X_train = np.array(X_train)
to_predict = X_test.drop('USERID', 1)
predict_set = pd.DataFrame(to_predict, columns=df_list)
predict_set.to_csv('data/pred.csv')
user_id_for_prediction = np.array(X_test['USERID'])
return X_train, y_train
if __name__ == '__main__':
X_train, y_train = data()
scale = StandardScaler()
scale.fit(X_train) # fitting of training data to be scaled
train_features = scale.transform(X_train)
X_train, X_test, y_train, y_test = train_test_split(train_features, y_train,
train_size=0.75, test_size=0.25)
param_grid = { # Parameters to tune
'n_clusters': [2]
}
model = KMeans() #Model to Tune
model.fit(X_train, y_train)
grid = GridSearchCV(model, param_grid, verbose=5, cv=10, n_jobs=multiprocessing.cpu_count(), scoring='roc_auc')
grid.fit(X_train, y_train)
print(grid.best_score_)
print(grid.best_params_)