-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathresolve.py
488 lines (461 loc) · 19.2 KB
/
resolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 14:15:17 2017
@author: david
"""
from . import parallel_task_manager
import os
import glob
import numpy as np
import itertools
import argparse
import multiprocessing as mp
try:
import queue
except ImportError:
import Queue as queue
from . import tree as tree_lib
from . import util
def DetachAndCleanup(top, n):
"""
top - the node that all the nodes in the current analysis will be below
nUp - the node above n originally, from here to nTop needs the cached data updated
"""
nUp = n.up
n = n.detach()
ch = nUp.get_children()
if len(ch) == 1:
if nUp.is_root():
# can't delete the root, need to detach the child nodes and reattach them to the root
for c in ch[0].get_children():
nUp.add_child(c.detach())
ch[0].delete()
return n, nUp, top
else:
if top == nUp: top = nUp.up
nUpNew = nUp.up
nUp.delete()
return n, nUpNew, top
return n, nUp, top
def GraftAndUpdate(top, n, s):
"""
Remove n from its location in the tree and make it sister to s. Update only the sp_down data. NOT the sp_up data.
Args:
nTop - node being reconcilled
n - node to move
s - node to make n sister to.
Returns:
The root of the tree
Implementation:
n and s could be anywhere in relation to one another, need to change all the species sets that could be affected
"""
n, nUp, top = DetachAndCleanup(top, n)
parent = s.up
if parent == None:
new = tree_lib.TreeNode()
new.add_feature("sp_up", set())
parent = new
top = new
new.add_child(n)
s = s.detach()
new.add_child(s)
s.sp_up = n.sp_down
else:
new = parent.add_child()
new.add_child(n)
s = s.detach()
new.add_child(s)
# sort out distances, new node will have a default distance of 1.0, correct this
new.dist = 0.1*s.dist
s.dist = 0.9*s.dist
# sort out sp_down data - can do a more efficient routine later if necessary (updating only what needs updating). Otherwise:
# all nodes on path from nTop to s need sp_down updating
new.add_feature("sp_down", s.sp_down.union(n.sp_down))
parent.sp_down = parent.sp_down.union(n.sp_down)
if not parent == top:
r = parent.up
while r != top:
r.sp_down = set.union(*[ch.sp_down for ch in r.get_children()])
r = r.up
# all nodes on path from nTop to n need sp_down updating
r = nUp
if r != None:
while r != top:
r.sp_down = set.union(*[ch.sp_down for ch in r.get_children()])
r = r.up
return new.get_tree_root()
def GraftTripartAndUpdate(nTop, s1, s2, p):
"""
Make s1 and s2 sister clades and hang the from parent node p
Args:
s1, s2 - nodes to be made sisters of each other
p - node to hang (s1,s2) from
"""
d1 = s1.up.dist
s1, s1Parent , nTop = DetachAndCleanup(nTop, s1)
d2 = s2.up.dist
s2, s2Parent, nTop = DetachAndCleanup(nTop, s2)
new = p.add_child()
new.dist = 0.5*(d1+d2)
new.add_child(s1)
new.add_child(s2)
new.add_feature("sp_down", s1.sp_down.union(s2.sp_down))
n = s1Parent
while n != nTop:
n.sp_down = set.union(*[ch.sp_down for ch in n.get_children()])
n = n.up
n = s2Parent
while n != nTop:
n.sp_down = set.union(*[ch.sp_down for ch in n.get_children()])
n = n.up
nTop.sp_down = set.union(*[ch.sp_down for ch in nTop.get_children()])
return new.get_tree_root()
def ContainsMonophyletic(e, O, i, I):
"""
Check if set of species O is found only in a clade below e. If so, returns (True, n) where n is the clade otherwise (False, None)
Args:
e - the node to check
O - the species set to look for
i - the current iteration
I - the one-past-the-last iteration. Number of checks will be M-m
Returns:
qSuccess, node, depth
where:
qSuccess - True if found species set O to be monophyletic
node - node of the monophyletic clade if qSuccess else the node it made it down to
depth - depth of the node, 0=(e is O), 1=(it's child is O), etc.
"""
E = e.sp_down
if E == O:
return True, e, i
i+=1
if i == I or e.is_leaf(): return False, e, i-1
ch = e.get_children()
inChild = [bool(O & c.sp_down) for c in ch]
if sum(inChild) > 1: return False, e, i-1 # bipart : cheange to if sum(inChild) == len(ch): return False, None
return ContainsMonophyletic(ch[inChild.index(True)], O, i, I) # bipart need to check more than one potentially
def check_monophyly(node, taxa):
""" This should be used as a wrapper of the ete method since that method returns false for a single node. It should return true
Args:
node - the node under which to search
taxa - the list of taxa
Returns
bool - are the taxa monophyletic
"""
if len(taxa) == 1:
return (list(taxa)[0] in node)
else:
return node.check_monophyly(target_attr='name', values=taxa)[0]
t = True
f = False
# dA = 1, dB = 0
# Subcases (S&O, S&U)
c10_a = {(f,f), (t,f), (t,t)}
c10_b = {(f,t),}
# dA = 1, dB = 1
# Subcases (S&O, S&W, S&U)
c11_a = {(f,f,f), (t,t,t), (t,t,f), (t,f,t)}
c11_b = {(f,t,f), (f,f,t)}
c11_c = {(f,t,t),}
# dA = 2, dB = 0
# Subcases (S&V, S&Y, S&O, V&Y)
#c20_a = {(f,f,f,f),}
#c20_b = {(f,f,f,t), (f,f,t,f), (f,f,t,t), (f,t,f,t), (f,t,t,t), (t,f,t,t), (t,t,f,f), (t,t,f,t), (t,t,t,t)}
c20_a = {(f,f,f,f),(f,f,t,f),}
c20_b = {(f,f,f,t), (f,f,t,t), (f,t,f,t), (f,t,t,t), (t,f,t,t), (t,t,f,f), (t,t,f,t), (t,t,t,t)}
c20_c = {(f,t,f,f), (f,t,t,f), (t,f,f,f), (t,f,f,t), (t,f,t,f)}
def resolve(n, M):
"""This is an improved but also more staightforward implementation of resolve. It also considers far more sub-cases.
It comes from writing up and generalising the first version.
Implementation:
lower case letters are nodes, uppercase letters are species sets
"""
if "recon" in n.features:
sis = n.recon
n.del_feature('recon')
# cannot assume that sis[0] or sis[1] this will be just a single node
if check_monophyly(n, sis[0]) and check_monophyly(n, sis[1]):
s0 = n.get_common_ancestor(sis[0]) if len(sis[0]) > 1 else (n&sis[0][0])
s1 = n.get_common_ancestor(sis[1]) if len(sis[1]) > 1 else (n&sis[1][0])
return GraftAndUpdate(n, s0, s1)
elif "recon_2" in n.features:
""" (dest, target, move_out)
move target to be sister to destination, move move_out to where target was
Note, move_out is a list of lists, corresponding to potentially multiple nodes"""
moves = n.recon_2
n.del_feature('recon_2')
dest, target, move_out = moves
if check_monophyly(n, dest) and check_monophyly(n, target) and all([check_monophyly(n, m) for m in move_out]):
# make all the move_out hang from a single node
if len(move_out) == 1:
sm_new = n.get_common_ancestor(move_out[0]) if len(move_out[0]) > 1 else (n&move_out[0][0])
else:
sm = n.get_common_ancestor(move_out[0]) if len(move_out[0]) > 1 else (n&move_out[0][0])
sm_new = sm.up.add_child()
dist = sm.up.dist
sm_new.dist = dist
sm_new_sp_down = set()
for m in move_out:
sm = n.get_common_ancestor(m) if len(m) > 1 else (n&m[0])
sm_new_sp_down.update(sm.sp_down)
sm = sm.detach()
sm_new.add_child(sm)
sm_new.add_feature("sp_down", sm_new_sp_down)
s0 = n.get_common_ancestor(dest) if len(dest) > 1 else (n&dest[0])
s1 = n.get_common_ancestor(target) if len(target) > 1 else (n&target[0])
d = s1.get_sisters()[0].dist
tree = GraftAndUpdate(n, s1, s0)
tree.dist = d
s3 = tree.get_common_ancestor(dest + target)
sister = s3.up.up
top = sister.up if sister.up != None else sister
return GraftAndUpdate(top, sm_new, sister)
ch = n.get_children()
if len(ch) != 2: return n.get_tree_root() #bipart
X,Y = [c.sp_down for c in ch]
O = X&Y
if not O: return n.get_tree_root()# no overlap, nothing to do
if X == Y: return n.get_tree_root() # identical species sets, they're paralogues
sis = n.get_sisters()
s = sis[0] if len(sis) == 1 else None
S = set() if (n.is_root() or len(n.get_sisters()) > 1) else set.union(*[nother.sp_down for nother in n.up.get_children() if nother != n]) # works for non-binary too
successA, nA, dA = ContainsMonophyletic(ch[0], O, 0, 3)
successB, nB, dB = ContainsMonophyletic(ch[1], O, 0, 3)
if dA+dB > 2:
if dA == 2:
successA, nA, dA = ContainsMonophyletic(ch[0], O, 0, 2)
if dB == 2:
successB, nB, dB = ContainsMonophyletic(ch[1], O, 0, 2)
if (dA==0 and dB==1) or (dA==1 and dB==0):
# Case A
# a is the one that branches
# v is the child of A that overlaps with O
if dA == 1:
a, b = ch
v = nA
else:
b, a = ch
v = nB
U = set.union(*[c.sp_down for c in a.get_children() if c != v]) # allows for non-binary
case = (bool(S&O), bool(S&U))
if case in c10_a:
return GraftAndUpdate(n, b, v)
elif case in c10_b:
n.up.add_feature("recon", (b.get_leaf_names(),s.get_leaf_names()))
return n.get_tree_root()
return n.get_tree_root()
elif (dA==1 and dB==1):
# Case B
# v is the child of A that overlaps with O (ws are the others)
# x is the child of B that overlaps with O
v = nA
x = nB
cha = ch[0].get_children()
chb = ch[1].get_children()
U = set.union(*[c.sp_down for c in cha if c != v]) # allows for non-binary
W = set.union(*[c.sp_down for c in chb if c != x]) # allows for non-binary
case = (bool(S&O), bool(S&W), bool(S&U))
if case in c11_a:
return GraftAndUpdate(n, x, v)
elif case in c11_b:
if W&S:
# switch, so that ws, x are below a
ws = [c for c in cha if c != v]
w_leaves = [c.get_leaf_names() for c in ws] # need to get the list of leaves that aren't in the node where the overlap is (for w.get_leaf_names(), below) AND need to update recon2 so that it will deal with multiple nodes in the ones it has to move
x = v
else:
ws = [c for c in chb if c != x]
w_leaves = [c.get_leaf_names() for c in ws]
n.up.add_feature("recon_2", (x.get_leaf_names(),s.get_leaf_names(),w_leaves))
return n.get_tree_root()
elif case in c11_c:
ws = [c for c in chb if c != x]
w_leaves = [g for c in ws for g in c.get_leaf_names()]
n.up.add_feature("recon", (s.get_leaf_names(), w_leaves))
return n.get_tree_root()
return n.get_tree_root()
elif (dA==2 and dB==0) or (dA==0 and dB==2):
# Case C
if dA == 2:
a,b = ch
else:
b,a = ch
cha = a.get_children()
i = next(ii for ii,c in enumerate(cha) if (c.sp_down & O)) # there will be only one node with an overlap
u = cha[i]
vs = [c for ii, c in enumerate(cha) if ii != i]
V = set.union(*[c.sp_down for c in vs])
chu = u.get_children()
i = next(ii for ii,c in enumerate(chu) if (c.sp_down & O))
z = chu[i]
ys = [c for ii, c in enumerate(chu) if ii != i]
Y = set.union(*[c.sp_down for c in ys])
case = (bool(S&V), bool(S&Y), bool(S&O), bool(V&Y))
if case in c20_a:
return GraftAndUpdate(n, b, z)
elif case in c20_b:
# need to make v a single node
if len(vs) == 1:
vs_new = vs[0]
else:
vs_up = vs[0].up
vs_new = vs_up.add_child()
vs_new.dist = vs_up.dist
vs_new_sp_down = set()
for v in vs:
vs_new_sp_down.update(v.sp_down)
v = v.detach()
vs_new.add_child(v)
vs_new.add_feature("sp_down", vs_new_sp_down)
return GraftAndUpdate(n, vs_new, b)
elif case in c20_c:
n.up.add_feature("recon", (b.get_leaf_names(), s.get_leaf_names()))
return n.get_tree_root()
return n.get_tree_root()
return n.get_tree_root()
def SpeciesOverlapDuplications(tree, GeneToSpecies):
species = list(set(map(GeneToSpecies, tree.get_leaf_names())))
genes = tree.get_leaf_names()
gDict = {gene:i for i,gene in enumerate(genes)}
sDict = {sp:i for i,sp in enumerate(species)}
for n in tree.traverse('postorder'):
if n.is_leaf(): continue
ch = n.get_children()
if len(ch) == 2:
l0 = ch[0].get_leaf_names()
l1 = ch[1].get_leaf_names()
s0 = {GeneToSpecies(l) for l in l0}
s1 = {GeneToSpecies(l) for l in l1}
if s0&s1:
n.name = "D"
else:
n.name = "S"
elif len(ch) > 2:
sp = [{GeneToSpecies(l) for l in c.get_leaf_names()} for c in ch]
if any(sp0&sp1 for sp0, sp1 in itertools.combinations(sp, 2)):
n.name = "D"
else:
n.name = "S"
def NumberOfOrthologues(tree, GeneToSpecies):
species = list(set(map(GeneToSpecies, tree.get_leaf_names())))
genes = tree.get_leaf_names()
gDict = {gene:i for i,gene in enumerate(genes)}
sDict = {sp:i for i,sp in enumerate(species)}
orthologues = np.zeros((len(genes), len(species)))
nOrtho = 0
for n in tree.traverse('postorder'):
if n.is_leaf(): continue
ch = n.get_children()
if len(ch) == 2:
l0 = ch[0].get_leaf_names()
l1 = ch[1].get_leaf_names()
s0 = {GeneToSpecies(l) for l in l0}
s1 = {GeneToSpecies(l) for l in l1}
if s0&s1: continue
nOrtho += len(l0)*len(l1)
for g0 in l0:
for s in s1:
orthologues[gDict[g0], sDict[s]] = 1
for g1 in l1:
for s in s0:
orthologues[gDict[g1], sDict[s]] = 1
elif len(ch) > 2:
for ch0, ch1 in itertools.combinations(ch, 2):
l0 = ch0.get_leaf_names()
l1 = ch1.get_leaf_names()
s0 = {GeneToSpecies(l) for l in l0}
s1 = {GeneToSpecies(l) for l in l1}
if s0&s1: continue
nOrtho += len(l0)*len(l1)
for g0 in l0:
for s in s1:
orthologues[gDict[g0], sDict[s]] = 1
for g1 in l1:
for s in s0:
orthologues[gDict[g1], sDict[s]] = 1
# print(nOrtho)
# N = (len(species)-1)*len(genes)
# print((sum(sum(orthologues)),float(N)))
# print(sum(sum(orthologues)))
class Finalise(object):
def __enter__(self):
pass
def __exit__(self, type, value, traceback):
ptm = parallel_task_manager.ParallelTaskManager_singleton()
ptm.Stop()
def DoTrees(trees_queue, GeneToSpecies, out_dir, species_tree_rooted, qResolve):
# Root using species tree if provided, otherwise tree should have been rooted already
while True:
try:
trees_fn = trees_queue.get(True, 0.1)
# print("Start: " + trees_fn)
tree = tree_lib.Tree(trees_fn)
# tree = tree_lib.Tree(trees_fn, format=3)
if len(tree) == 1: continue
if species_tree_rooted != None:
tree.prune(tree.get_leaf_names())
roots = om1.GetRoots(tree, species_tree_rooted, GeneToSpecies)
if len(roots) == 0: continue
# Pick the first root for now
root = roots[0]
if root != tree:
tree.set_outgroup(root)
tree.write(outfile=(out_dir + "/" + os.path.basename(trees_fn) + "_rooted.tre"))
if qResolve:
om1.StoreSpeciesSets(tree, GeneToSpecies)
# Perform full reconciliation
for n in tree.traverse("postorder"):
tree = resolve(n, GeneToSpecies)
# NumberOfOrthologues(tree, GeneToSpecies)
SpeciesOverlapDuplications(tree, GeneToSpecies)
# print("Done: " + trees_fn)
tree.write(outfile=(out_dir + "/" + os.path.basename(trees_fn) + ".rec.tre"), format=3)
except queue.Empty:
return
def Resolve_Main(trees_fn_or_dir, out_dir, species_tree_rooted_fn, GeneToSpecies, nThreads, qResolve=True, qTest=False):
"""
Resolves the single tree or trees in the directory trees_fn. If no species tree is provided then the gene tree is assumed to
be rooted
Args:
trees_fn - tree filename or directory containing trees
species_tree_rooted_fn - species tree used to root the tree. If None then the gene tree is assumed to be rooted already
"""
if species_tree_rooted_fn != None:
species_tree_rooted = tree_lib.Tree(species_tree_rooted_fn)
else:
species_tree_rooted = None
qDir = True
try:
tree = tree_lib.Tree(trees_fn_or_dir)
qDir = False
except:
try:
tree = tree_lib.Tree(trees_fn_or_dir, format=3)
qDir = False
except:
pass
trees = glob.glob(trees_fn_or_dir + "/*") if qDir else [trees_fn_or_dir]
# for trees_fn in trees:
# DoTree(trees_fn, GeneToSpecies, out_dir, species_tree_rooted, qTest)
queue = mp.Queue()
for t in trees:
queue.put(t)
# DoTree(trees_fn, GeneToSpecies, out_dir, species_tree_rooted, qTest)
runningProcesses = [mp.Process(target=DoTrees, args=(queue, GeneToSpecies, out_dir, species_tree_rooted, qResolve)) for i_ in range(nThreads)]
for proc in runningProcesses:
proc.start()
for proc in runningProcesses:
proc.join()
if __name__ == "__main__":
with Finalise():
from . import trees2ologs_of as om1
parser = argparse.ArgumentParser()
parser.add_argument("gene_tree")
parser.add_argument("out_dir")
parser.add_argument("-r", "--rooted_species_tree")
parser.add_argument("-n", "--nthreads", type=int, default=1)
parser.add_argument("-s", "--separator", choices=("dot", "dash", "second_dash", "3rd_dash", "hyphen"), help="Separator been species name and gene name in gene tree taxa")
# parser.add_argument("-t", "--test", action="store_true", help="Perform a single operation on the largest node one step down--allows testing of the method")
parser.add_argument("--no_resolve", action="store_true", help="Only perform species-overlap duplication analysis")
args = parser.parse_args()
Resolve_Main(args.gene_tree, args.out_dir, args.rooted_species_tree, om1.GetGeneToSpeciesMap(args), args.nthreads, not args.no_resolve, False)