Skip to content

Latest commit

 

History

History
542 lines (468 loc) · 16.1 KB

TRAINING.md

File metadata and controls

542 lines (468 loc) · 16.1 KB

Training

We provide ImageNet-1K training, ImageNet-22K pre-training, and ImageNet-1K fine-tuning commands here. Please check INSTALL.md for installation instructions first.

Multi-node Training

We use multi-node training on a SLURM cluster with submitit for producing the results and models in the paper. Please install:

pip install submitit

We will give example commands for both multi-node and single-machine training below.

ImageNet-1K Training

ConvNeXt-T training on ImageNet-1K with 4 8-GPU nodes:

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_tiny --drop_path 0.1 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results
  • You may need to change cluster-specific arguments in run_with_submitit.py.
  • You can add --use_amp true to train in PyTorch's Automatic Mixed Precision (AMP).
  • Use --resume /path/to/checkpoint/--auto_resume true to resume training from a previous checkpoint/output folder.
  • --batch_size: batch size per GPU; --update_freq: gradient accumulation steps.
  • The effective batch size = --nodes * --ngpus * --batch_size * --update_freq. In the example above, the effective batch size is 4*8*128*1 = 4096. You can adjust these four arguments together to keep the effective batch size at 4096 and avoid OOM issues, based on the model size, number of nodes and GPU memory.

You can use the following command to run this experiment on a single machine:

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_tiny --drop_path 0.1 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k 
--output_dir /path/to/save_results
  • Here, the effective batch size = --nproc_per_node * --batch_size * --update_freq. In the example above, the effective batch size is 8*128*4 = 4096. Running on one machine, we increased update_freq so that the total batch size is unchanged.

To train other ConvNeXt variants, --model and --drop_path need to be changed. Examples are given below, each with both multi-node and single-machine commands:

ConvNeXt-S

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_small --drop_path 0.4 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_small --drop_path 0.4 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-B

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_base --drop_path 0.5 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_base --drop_path 0.5 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-L

Multi-node

python run_with_submitit.py --nodes 8 --ngpus 8 \
--model convnext_large --drop_path 0.5 \
--batch_size 64 --lr 4e-3 --update_freq 1 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_large --drop_path 0.5 \
--batch_size 64 --lr 4e-3 --update_freq 8 \
--model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-S (isotropic)

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_isotropic_small --drop_path 0.1 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--layer_scale_init_value 0 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_isotropic_small --drop_path 0.1 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--layer_scale_init_value 0 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-B (isotropic)

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_isotropic_base --drop_path 0.2 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--layer_scale_init_value 0 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_isotropic_base --drop_path 0.2 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--layer_scale_init_value 0 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-L (isotropic)

Multi-node

python run_with_submitit.py --nodes 8 --ngpus 8 \
--model convnext_isotropic_large --drop_path 0.5 \
--batch_size 64 --lr 4e-3 --update_freq 1 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_isotropic_large --drop_path 0.5 \
--batch_size 64 --lr 4e-3 --update_freq 8 \
--warmup_epochs 50 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results

ImageNet-22K Pre-training

ImageNet-22K is significantly larger than ImageNet-1K in terms of data size, so we use 16 8-GPU nodes for pre-training on ImageNet-22K.

ConvNeXt-B pre-training on ImageNet-22K:

Multi-node

python run_with_submitit.py --nodes 16 --ngpus 8 \
--model convnext_base --drop_path 0.1 \
--batch_size 32 --lr 4e-3 --update_freq 1 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_base --drop_path 0.1 \
--batch_size 32 --lr 4e-3 --update_freq 16 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--output_dir /path/to/save_results
ConvNeXt-L

Multi-node

python run_with_submitit.py --nodes 16 --ngpus 8 \
--model convnext_large --drop_path 0.1 \
--batch_size 32 --lr 4e-3 --update_freq 1 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_large --drop_path 0.1 \
--batch_size 32 --lr 4e-3 --update_freq 16 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--output_dir /path/to/save_results
ConvNeXt-XL

Multi-node

python run_with_submitit.py --nodes 16 --ngpus 8 \
--model convnext_xlarge --drop_path 0.2 \
--batch_size 32 --lr 4e-3 --update_freq 1 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_xlarge --drop_path 0.2 \
--batch_size 32 --lr 4e-3 --update_freq 16 \
--warmup_epochs 5 --epochs 90 \
--data_set image_folder --nb_classes 21841 --disable_eval true \
--data_path /path/to/imagenet-22k \
--output_dir /path/to/save_results

ImageNet-1K Fine-tuning

Finetune from ImageNet-1K pre-training

The training commands given above for ImageNet-1K use the default resolution (224). We also fine-tune these trained models with a larger resolution (384). Please specify the path or url to the checkpoint in --finetune.

ConvNeXt-B fine-tuning on ImageNet-1K (384x384):

Multi-node

python run_with_submitit.py --nodes 2 --ngpus 8 \
--model convnext_base --drop_path 0.8 --input_size 384 \
--batch_size 32 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.7 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_base --drop_path 0.8 --input_size 384 \
--batch_size 32 --lr 5e-5 --update_freq 2 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.7 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-L (384x384)

Multi-node

python run_with_submitit.py --nodes 2 --ngpus 8 \
--model convnext_large --drop_path 0.95 --input_size 384 \
--batch_size 32 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.7 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_large --drop_path 0.95 --input_size 384 \
--batch_size 32 --lr 5e-5 --update_freq 2 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.7 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
  • The fine-tuning for ImageNet-1K pre-trained ConvNeXt-L starts from the best ema weights during pre-training. You can add --model_key model_ema to load from a saved checkpoint that has model_ema as a key (e.g., obtained by training with --model_ema true), to load ema weights. Note that our provided pre-trained checkpoints only have model as the only key.

Fine-tune from ImageNet-22K pre-training

We finetune from ImageNet-22K pre-trained models, in both 224 and 384 resolutions. ConvNeXt-B fine-tuning on ImageNet-1K (224x224)

Multi-node

python run_with_submitit.py --nodes 2 --ngpus 8 \
--model convnext_base --drop_path 0.2 --input_size 224 \
--batch_size 32 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_base --drop_path 0.2 --input_size 224 \
--batch_size 32 --lr 5e-5 --update_freq 2 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-L (224x224)

Multi-node

python run_with_submitit.py --nodes 2 --ngpus 8 \
--model convnext_large --drop_path 0.3 --input_size 224 \
--batch_size 32 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_large --drop_path 0.3 --input_size 224 \
--batch_size 32 --lr 5e-5 --update_freq 2 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-XL (224x224)

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_xlarge --drop_path 0.4 --input_size 224 \
--batch_size 16 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results \
--model_ema true --model_ema_eval true

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_xlarge --drop_path 0.4 --input_size 224 \
--batch_size 16 --lr 5e-5 --update_freq 4 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results \
--model_ema true --model_ema_eval true
ConvNeXt-B (384x384)

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_base --drop_path 0.2 --input_size 384 \
--batch_size 16 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_base --drop_path 0.2 --input_size 384 \
--batch_size 16 --lr 5e-5 --update_freq 4 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-L (384x384)

Multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model convnext_large --drop_path 0.3 --input_size 384 \
--batch_size 16 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_large --drop_path 0.3 --input_size 384 \
--batch_size 16 --lr 5e-5 --update_freq 4 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results
ConvNeXt-XL (384x384)

Multi-node

python run_with_submitit.py --nodes 8 --ngpus 8 \
--model convnext_xlarge --drop_path 0.4 --input_size 384 \
--batch_size 8 --lr 5e-5 --update_freq 1 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--job_dir /path/to/save_results \
--model_ema true --model_ema_eval true

Single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model convnext_xlarge --drop_path 0.4 --input_size 384 \
--batch_size 8 --lr 5e-5 --update_freq 8 \
--warmup_epochs 0 --epochs 30 --weight_decay 1e-8  \
--layer_decay 0.8 --head_init_scale 0.001 --cutmix 0 --mixup 0 \
--finetune /path/to/checkpoint.pth \
--data_path /path/to/imagenet-1k \
--output_dir /path/to/save_results \
--model_ema true --model_ema_eval true