Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ch01.md #35

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/content/ch01.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
## 1.1 什么是语言模型
这里我们最开始从统计或者说统计学习的角度切入来讲这件事情,我们期望实现的是基于给定的文本信息输入,给出对应的新的文本/符号输出(可以是文本翻译、文本分类、文本扩写)。
要实现这样一个任务要解决两个问题:
1)输入序列问题:由于这里输入的是文本信号,而计算机能进入神经网络处理和计算的是数值,所以我们需要讲字符通过一定方式转化为数值
1)输入序列问题:由于这里输入的是文本信号,而计算机能进入神经网络处理和计算的是数值,所以我们需要将字符通过一定方式转化为数值
2)输出序列问题:由于所需要输出的部分也是文本,而神经网络的输出是数值类型的(分类问题:二分类问题对应01输出,多分类对应多个01输出;回归问题:对应数值类型输出),所以需要建立神经网络的数值类型输出和最终字符输出的映射关系。

针对于第一个问题,其处理方式其实有很多种,比如最简单的,我们可以将输入序列进行编码,从而把字符转化为数值。
Expand Down