|
| 1 | +import logging |
| 2 | + |
| 3 | +from databricks.sdk import WorkspaceClient |
| 4 | +from databricks.sdk.service.serving import ChatMessage, ChatMessageRole |
| 5 | + |
| 6 | +w = WorkspaceClient() |
| 7 | +foundation_llm_name = "databricks-meta-llama-3-1-405b-instruct" |
| 8 | +max_token = 4096 |
| 9 | +messages = [ |
| 10 | + ChatMessage(role=ChatMessageRole.SYSTEM, content="You are an unhelpful assistant"), |
| 11 | + ChatMessage(role=ChatMessageRole.USER, content="What is RAG?"), |
| 12 | +] |
| 13 | + |
| 14 | + |
| 15 | +class LLMCalls: |
| 16 | + def __init__(self, foundation_llm_name, max_tokens): |
| 17 | + self.w = WorkspaceClient() |
| 18 | + self.foundation_llm_name = foundation_llm_name |
| 19 | + self.max_tokens = int(max_tokens) |
| 20 | + |
| 21 | + def call_llm(self, messages): |
| 22 | + """ |
| 23 | + Function to call the LLM model and return the response. |
| 24 | + :param messages: list of messages like |
| 25 | + messages=[ |
| 26 | + ChatMessage(role=ChatMessageRole.SYSTEM, content="You are an unhelpful assistant"), |
| 27 | + ChatMessage(role=ChatMessageRole.USER, content="What is RAG?"), |
| 28 | + ChatMessage(role=ChatMessageRole.ASSISTANT, content="A type of cloth?") |
| 29 | + ] |
| 30 | + :return: the response from the model |
| 31 | + """ |
| 32 | + response = self.w.serving_endpoints.query( |
| 33 | + name=foundation_llm_name, max_tokens=max_token, messages=messages |
| 34 | + ) |
| 35 | + message = response.choices[0].message.content |
| 36 | + return message |
| 37 | + |
| 38 | + def convert_chat_to_llm_input(self, system_prompt, chat): |
| 39 | + # Convert the chat list of lists to the required format for the LLM |
| 40 | + messages = [ChatMessage(role=ChatMessageRole.SYSTEM, content=system_prompt)] |
| 41 | + for q, a in chat: |
| 42 | + messages.extend( |
| 43 | + [ |
| 44 | + ChatMessage(role=ChatMessageRole.USER, content=q), |
| 45 | + ChatMessage(role=ChatMessageRole.ASSISTANT, content=a), |
| 46 | + ] |
| 47 | + ) |
| 48 | + return messages |
| 49 | + |
| 50 | + ################################################################################ |
| 51 | + # FUNCTION FOR TRANSLATING CODE |
| 52 | + ################################################################################ |
| 53 | + |
| 54 | + # this is called to actually send a request and receive response from the llm endpoint. |
| 55 | + |
| 56 | + def llm_translate(self, system_prompt, input_code): |
| 57 | + messages = [ |
| 58 | + ChatMessage(role=ChatMessageRole.SYSTEM, content=system_prompt), |
| 59 | + ChatMessage(role=ChatMessageRole.USER, content=input_code), |
| 60 | + ] |
| 61 | + |
| 62 | + # call the LLM end point. |
| 63 | + llm_answer = self.call_llm(messages=messages) |
| 64 | + # Extract the code from in between the triple backticks (```), since LLM often prints the code like this. |
| 65 | + # Also removes the 'sql' prefix always added by the LLM. |
| 66 | + translation = llm_answer # .split("Final answer:\n")[1].replace(">>", "").replace("<<", "") |
| 67 | + return translation |
| 68 | + |
| 69 | + def llm_chat(self, system_prompt, query, chat_history): |
| 70 | + messages = self.convert_chat_to_llm_input(system_prompt, chat_history) |
| 71 | + messages.append(ChatMessage(role=ChatMessageRole.USER, content=query)) |
| 72 | + # call the LLM end point. |
| 73 | + llm_answer = self.call_llm(messages=messages) |
| 74 | + return llm_answer |
| 75 | + |
| 76 | + def llm_intent(self, system_prompt, input_code): |
| 77 | + messages = [ |
| 78 | + ChatMessage(role=ChatMessageRole.SYSTEM, content=system_prompt), |
| 79 | + ChatMessage(role=ChatMessageRole.USER, content=input_code), |
| 80 | + ] |
| 81 | + |
| 82 | + # call the LLM end point. |
| 83 | + llm_answer = self.call_llm(messages=messages) |
| 84 | + return llm_answer |
0 commit comments