Q1: 本项目支持哪些文件格式?
A1: 目前已测试支持 txt、docx、md、pdf 格式文件,更多文件格式请参考 langchain 文档。目前已知文档中若含有特殊字符,可能存在文件无法加载的问题。
Q2: 执行 pip install -r requirements.txt
过程中,安装 detectron2
时发生报错怎么办?
A2: 如果不需要对 pdf
格式文件读取,可不安装 detectron2
;如需对 pdf
文件进行高精度文本提取,建议按照如下方法安装:
$ git clone https://github.com/facebookresearch/detectron2.git
$ cd detectron2
$ pip install -e .
Q3: 使用过程中 Python 包nltk
发生了Resource punkt not found.
报错,该如何解决?
A3: 方法一:https://github.com/nltk/nltk_data/raw/gh-pages/packages/tokenizers/punkt.zip 中的 packages/tokenizers
解压,放到 nltk_data/tokenizers
存储路径下。
nltk_data
存储路径可以通过 nltk.data.path
查询。
方法二:执行python代码
import nltk
nltk.download()
Q4: 使用过程中 Python 包nltk
发生了Resource averaged_perceptron_tagger not found.
报错,该如何解决?
A4: 方法一:将 https://github.com/nltk/nltk_data/blob/gh-pages/packages/taggers/averaged_perceptron_tagger.zip 下载,解压放到 nltk_data/taggers
存储路径下。
nltk_data
存储路径可以通过 nltk.data.path
查询。
方法二:执行python代码
import nltk
nltk.download()
Q5: 本项目可否在 colab 中运行?
A5: 可以尝试使用 chatglm-6b-int4 模型在 colab 中运行,需要注意的是,如需在 colab 中运行 Web UI,需将webui.py
中demo.queue(concurrency_count=3).launch( server_name='0.0.0.0', share=False, inbrowser=False)
中参数share
设置为True
。
Q6: 在 Anaconda 中使用 pip 安装包无效如何解决?
A6: 此问题是系统环境问题,详细见 在Anaconda中使用pip安装包无效问题
Q7: 本项目中所需模型如何下载至本地?
A7: 本项目中使用的模型均为huggingface.com
中可下载的开源模型,以默认选择的chatglm-6b
和text2vec-large-chinese
模型为例,下载模型可执行如下代码:
# 安装 git lfs
$ git lfs install
# 下载 LLM 模型
$ git clone https://huggingface.co/THUDM/chatglm-6b /your_path/chatglm-6b
# 下载 Embedding 模型
$ git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese /your_path/text2vec
# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
$ git pull
Q8: huggingface.com
中模型下载速度较慢怎么办?
A8: 可使用本项目用到的模型权重文件百度网盘地址:
- ernie-3.0-base-zh.zip 链接: https://pan.baidu.com/s/1CIvKnD3qzE-orFouA8qvNQ?pwd=4wih
- ernie-3.0-nano-zh.zip 链接: https://pan.baidu.com/s/1Fh8fgzVdavf5P1omAJJ-Zw?pwd=q6s5
- text2vec-large-chinese.zip 链接: https://pan.baidu.com/s/1sMyPzBIXdEzHygftEoyBuA?pwd=4xs7
- chatglm-6b-int4-qe.zip 链接: https://pan.baidu.com/s/1DDKMOMHtNZccOOBGWIOYww?pwd=22ji
- chatglm-6b-int4.zip 链接: https://pan.baidu.com/s/1pvZ6pMzovjhkA6uPcRLuJA?pwd=3gjd
- chatglm-6b.zip 链接: https://pan.baidu.com/s/1B-MpsVVs1GHhteVBetaquw?pwd=djay
Q9: 下载完模型后,如何修改代码以执行本地模型?
A9: 模型下载完成后,请在 configs/model_config.py 文件中,对embedding_model_dict
和llm_model_dict
参数进行修改,如把llm_model_dict
从
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese"
}
修改为
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "/Users/liuqian/Downloads/ChatGLM-6B/text2vec-large-chinese"
}
Q10: 执行python cli_demo.py
过程中,显卡内存爆了,提示"OutOfMemoryError: CUDA out of memory"
A10: 将 VECTOR_SEARCH_TOP_K
和 LLM_HISTORY_LEN
的值调低,比如 VECTOR_SEARCH_TOP_K = 5
和 LLM_HISTORY_LEN = 2
,这样由 query
和 context
拼接得到的 prompt
会变短,会减少内存的占用。