-
Notifications
You must be signed in to change notification settings - Fork 5
/
bnorm.py
62 lines (55 loc) · 2.36 KB
/
bnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
class VBN(object):
"""
Virtual Batch Normalization
(modified from https://github.com/openai/improved-gan/ definition)
"""
def __init__(self, x, name, epsilon=1e-5):
"""
x is the reference batch
"""
assert isinstance(epsilon, float)
shape = x.get_shape().as_list()
assert len(shape) == 3, shape
with tf.variable_scope(name) as scope:
assert name.startswith("d_") or name.startswith("g_")
self.epsilon = epsilon
self.name = name
self.mean = tf.reduce_mean(x, [0, 1], keep_dims=True)
self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1], keep_dims=True)
self.batch_size = int(x.get_shape()[0])
assert x is not None
assert self.mean is not None
assert self.mean_sq is not None
out = self._normalize(x, self.mean, self.mean_sq, "reference")
self.reference_output = out
def __call__(self, x):
shape = x.get_shape().as_list()
with tf.variable_scope(self.name) as scope:
new_coeff = 1. / (self.batch_size + 1.)
old_coeff = 1. - new_coeff
new_mean = tf.reduce_mean(x, [0, 1], keep_dims=True)
new_mean_sq = tf.reduce_mean(tf.square(x), [0, 1], keep_dims=True)
mean = new_coeff * new_mean + old_coeff * self.mean
mean_sq = new_coeff * new_mean_sq + old_coeff * self.mean_sq
out = self._normalize(x, mean, mean_sq, "live")
return out
def _normalize(self, x, mean, mean_sq, message):
# make sure this is called with a variable scope
shape = x.get_shape().as_list()
assert len(shape) == 3
self.gamma = tf.get_variable("gamma", [shape[-1]],
initializer=tf.random_normal_initializer(1., 0.02))
gamma = tf.reshape(self.gamma, [1, 1, -1])
self.beta = tf.get_variable("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
beta = tf.reshape(self.beta, [1, 1, -1])
assert self.epsilon is not None
assert mean_sq is not None
assert mean is not None
std = tf.sqrt(self.epsilon + mean_sq - tf.square(mean))
out = x - mean
out = out / std
out = out * gamma
out = out + beta
return out