-
Notifications
You must be signed in to change notification settings - Fork 54
/
train_ms.py
241 lines (202 loc) · 11.8 KB
/
train_ms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import tqdm
import logging
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from typing import List
import utils.task as task
from utils.hparams import get_hparams
from model.models import SynthesizerTrn
from model.discriminator import MultiPeriodDiscriminator
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate, DistributedBucketSampler
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss, kl_loss_normal
from utils.mel_processing import wav_to_mel, spec_to_mel, spectral_norm
from utils.model import slice_segments, clip_grad_value_
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "8000"
hps = get_hparams()
mp.spawn(
run,
nprocs=n_gpus,
args=(
n_gpus,
hps,
),
)
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = task.get_logger(hps.model_dir)
logger.info(hps)
task.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(backend="nccl", init_method="env://", world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(train_dataset, hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000], num_replicas=n_gpus, rank=rank, shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
len(train_dataset.vocab), hps.data.n_mels if hps.data.use_mel else hps.data.n_fft // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model
).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(net_g.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps)
optim_d = torch.optim.AdamW(net_d.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
try:
_, _, _, epoch_str = task.load_checkpoint(task.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
_, _, _, epoch_str = task.load_checkpoint(task.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
global_step = (epoch_str - 1) * len(train_loader)
net_g.module.mas_noise_scale = max(hps.model.mas_noise_scale - global_step * hps.model.mas_noise_scale_decay, 0.0)
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets: List[torch.nn.parallel.DistributedDataParallel], optims: List[torch.optim.Optimizer], schedulers, scaler: GradScaler, loaders, logger: logging.Logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if rank == 0:
loader = tqdm.tqdm(train_loader, desc=f"Epoch {epoch}")
else:
loader = train_loader
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(loader):
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(m_p_text, logs_p_text),
(m_p_dur, logs_p_dur, z_q_dur, logs_q_dur),
(m_p_audio, logs_p_audio, m_q_audio, logs_q_audio),
) = net_g(x, x_lengths, spec, spec_lengths, speakers)
mel = spectral_norm(spec) if hps.data.use_mel else spec_to_mel(spec, hps.data.n_fft, hps.data.n_mels, hps.data.sample_rate, hps.data.f_min, hps.data.f_max)
y_hat_mel = wav_to_mel(y_hat.squeeze(1), hps.data.n_fft, hps.data.n_mels, hps.data.sample_rate, hps.data.hop_length, hps.data.win_length, hps.data.f_min, hps.data.f_max)
y_mel = slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y = slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_gen, losses_gen = generator_loss(y_d_hat_g)
# TODO Test gain constant
if False:
loss_kl_text = kl_loss_normal(m_q_text, logs_q_text, m_p_text, logs_p_text, x_mask) * hps.train.c_kl_text
loss_kl_dur = kl_loss(z_q_dur, logs_q_dur, m_p_dur, logs_p_dur, z_mask) * hps.train.c_kl_dur
loss_kl_audio = kl_loss_normal(m_p_audio, logs_p_audio, m_q_audio, logs_q_audio, z_mask) * hps.train.c_kl_audio
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl_dur + loss_kl_audio # TODO + loss_kl_text
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl_dur, loss_kl_audio] # TODO loss_kl_text
losses_str = " ".join(f"{loss.item():.3f}" for loss in losses)
loader.set_postfix_str(f"{losses_str}, {global_step}, {lr:.9f}")
# scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
# scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl_dur})
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
# image_dict = {
# "slice/mel_org": task.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
# "slice/mel_gen": task.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
# "all/mel": task.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
# "all/attn": task.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy()),
# }
# task.summarize(writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict, sample_rate=hps.data.sample_rate)
# Save checkpoint on CPU to prevent GPU OOM
if global_step % hps.train.eval_interval == 0:
# evaluate(hps, net_g, eval_loader, writer_eval)
task.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
task.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
global_step += 1
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
speakers = speakers.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
speakers = speakers[:1]
break
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spectral_norm(spec) if hps.data.use_mel else spec_to_mel(spec, hps.data.n_fft, hps.data.n_mels, hps.data.sample_rate, hps.data.f_min, hps.data.f_max)
y_hat_mel = wav_to_mel(y_hat.squeeze(1).float(), hps.data.n_fft, hps.data.n_mels, hps.data.sample_rate, hps.data.hop_length, hps.data.win_length, hps.data.f_min, hps.data.f_max)
image_dict = {"gen/mel": task.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())}
audio_dict = {"gen/audio": y_hat[0, :, : y_hat_lengths[0]]}
if global_step == 0:
image_dict.update({"gt/mel": task.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({"gt/audio": y[0, :, : y_lengths[0]]})
task.summarize(writer=writer_eval, global_step=global_step, images=image_dict, audios=audio_dict, sample_rate=hps.data.sample_rate)
generator.train()
if __name__ == "__main__":
main()