-
Notifications
You must be signed in to change notification settings - Fork 15
/
ldmvfi-vqflow-f32-c256-concat_max.yaml
98 lines (93 loc) · 2.6 KB
/
ldmvfi-vqflow-f32-c256-concat_max.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusionVFI
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: past_future_frames
image_size: 8
channels: 3
cond_stage_trainable: False
concat_mode: True
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 8 # img size of latent, used during training, determines some model params, so don't change for inference
in_channels: 9
out_channels: 3
model_channels: 256
attention_resolutions:
#note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 32 for f8
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
num_head_channels: 32
use_max_self_attn: True # replace all full self-attention with MaxViT
first_stage_config:
target: ldm.models.autoencoder.VQFlowNetInterface
params:
ckpt_path: null # must specify pre-trained autoencoding model ckpt to train the denoising UNet
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: False
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 64
ch_mult: [1,2,2,2,4] # f = 2 ^ len(ch_mult)
num_res_blocks: 1
cond_type: max_cross_attn
attn_type: max
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_first_stage__
data:
target: main.DataModuleFromConfig
params:
batch_size: 64
num_workers: 0
wrap: false
train:
target: ldm.data.bvi_vimeo.BVI_Vimeo_triplet
params:
db_dir: C:/data_tmp/
crop_sz: [256,256]
iter: True
validation:
target: ldm.data.bvi_vimeo.Vimeo90k_triplet
params:
db_dir: C:/data_tmp/vimeo_septuplet/
train: False
crop_sz: [256,256]
augment_s: False
augment_t: False
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1250
val_batch_frequency: 125
max_images: 8
increase_log_steps: False
log_images_kwargs: {'N': 1}
trainer:
benchmark: True
max_epochs: -1