Skip to content

Commit 1fd4e39

Browse files
author
Sourcery AI
committed
'Refactored by Sourcery'
1 parent e4b834c commit 1fd4e39

File tree

8 files changed

+116
-143
lines changed

8 files changed

+116
-143
lines changed

analysis_main.py

Lines changed: 19 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -32,13 +32,8 @@ def tri_filter(signal, kernel_delta):
3232
width of kernel in datapoints
3333
"""
3434
kernel = np.append(np.arange(kernel_delta / 2), np.arange(kernel_delta / 2, -1, -1))
35-
# convolve2d has proven PAINFULLY slow for some reason
36-
# signal_conv = convolve2d(signal,kernel,'same')
37-
new_signal = []
38-
for x in signal:
39-
new_signal.append(convolve(x, kernel, "same"))
40-
signal_conv = np.array(new_signal)
41-
return signal_conv
35+
new_signal = [convolve(x, kernel, "same") for x in signal]
36+
return np.array(new_signal)
4237

4338

4439
def correlate_signals(signal1, signal2):
@@ -66,8 +61,7 @@ def avg_dotprod_signals(signal1, signal2):
6661
non_silent_sigs.sort()
6762
product = signal1[non_silent_sigs] * signal2[non_silent_sigs]
6863
prod_sum = product.sum(axis=1)
69-
avg_dot_product = prod_sum.mean()
70-
return avg_dot_product
64+
return prod_sum.mean()
7165

7266

7367
def ndp_signals(signal1, signal2):
@@ -103,14 +97,10 @@ def avg_dotprod_signals_tbinned(signal1, signal2, len_bin=1000):
10397
signal2 = np.reshape(signal2[:, 0 : int((signal2.shape[1] / len_bin) * len_bin)], (signal2.shape[0], signal2.shape[1] / len_bin, len_bin), len_bin)
10498
signal2 = signal2[:, 0:5, :]
10599

106-
sig1 = []
107-
for x in signal1:
108-
sig1.append(normalize(x, axis=1))
100+
sig1 = [normalize(x, axis=1) for x in signal1]
109101
signal1 = np.array(sig1)
110102

111-
sig2 = []
112-
for x in signal2:
113-
sig2.append(normalize(x, axis=1))
103+
sig2 = [normalize(x, axis=1) for x in signal2]
114104
signal2 = np.array(sig2)
115105

116106
product = signal1 * signal2
@@ -120,8 +110,7 @@ def avg_dotprod_signals_tbinned(signal1, signal2, len_bin=1000):
120110

121111
for x in silent_sigs:
122112
prod_sum[x[0], x[1]] = np.NaN
123-
avg_dot_product = np.nanmean(prod_sum, axis=0)
124-
return avg_dot_product
113+
return np.nanmean(prod_sum, axis=0)
125114

126115

127116
def time_stamps_to_signal(time_stamps, dt_signal, t_start, t_stop):
@@ -135,8 +124,7 @@ def time_stamps_to_signal(time_stamps, dt_signal, t_start, t_stop):
135124
for x in time_stamps:
136125
curr_idc = []
137126
if np.any(x):
138-
for y in x:
139-
curr_idc.append((y - t_start) / dt_signal)
127+
curr_idc.extend((y - t_start) / dt_signal for y in x)
140128
time_idc.append(curr_idc)
141129

142130
# Set the spike indices to 1
@@ -173,11 +161,10 @@ def similarity_measure_leutgeb_BUGGY(signal1, signal2, len_bin):
173161
signal2 = np.reshape(signal2[:, 0 : int((signal2.shape[1] / len_bin) * len_bin)], (signal2.shape[0], signal2.shape[1] / len_bin, len_bin), len_bin)
174162
signal2 = signal2.sum(axis=2)
175163

176-
corr_vector = []
177-
178-
for x in range(signal1.shape[1]):
179-
corr_vector.append(pearsonr(signal1[:, x], signal2[:, x])[0])
180-
164+
corr_vector = [
165+
pearsonr(signal1[:, x], signal2[:, x])[0]
166+
for x in range(signal1.shape[1])
167+
]
181168
return np.array(corr_vector)
182169

183170

@@ -189,10 +176,10 @@ def similarity_measure_leutgeb(signal1, signal2, len_bin):
189176
signal2 = np.reshape(signal2[:, 0 : int(len_bin * int(signal2.shape[1] / len_bin))], (signal2.shape[0], int(signal2.shape[1] / len_bin), len_bin))
190177
signal2 = signal2.sum(axis=2)
191178
pdb.set_trace()
192-
corr_vector = []
193-
194-
for x in range(signal1.shape[1]):
195-
corr_vector.append(pearsonr(signal1[:, x], signal2[:, x])[0])
179+
corr_vector = [
180+
pearsonr(signal1[:, x], signal2[:, x])[0]
181+
for x in range(signal1.shape[1])
182+
]
196183
pdb.set_trace()
197184
return np.array(corr_vector)
198185

@@ -239,27 +226,17 @@ def sqrt_diff_norm(signal1, signal2, len_bin):
239226
def inner_pearsonr_BUGGY(signal1, len_bin):
240227
signal1 = np.reshape(signal1[:, 0 : int((signal1.shape[1] / len_bin) * len_bin)], (signal1.shape[0], signal1.shape[1] / len_bin, len_bin), len_bin)
241228
return signal1
242-
signal1 = signal1.sum(axis=2)
243-
244-
corr_vector = []
245-
246-
for x in range(signal1.shape[1]):
247-
corr_vector.append(pearsonr(signal1[:, 0], signal1[:, x])[0])
248-
249-
return corr_vector
250229

251230

252231
def inner_pearsonr(signal1, len_bin):
253232
signal1 = np.reshape(signal1, (signal1.shape[0], signal1.shape[1] / len_bin, len_bin))
254233

255234
signal1 = signal1.sum(axis=2)
256235

257-
corr_vector = []
258-
259-
for x in range(signal1.shape[1]):
260-
corr_vector.append(pearsonr(signal1[:, 0], signal1[:, x])[0])
261-
262-
return corr_vector
236+
return [
237+
pearsonr(signal1[:, 0], signal1[:, x])[0]
238+
for x in range(signal1.shape[1])
239+
]
263240

264241

265242
if __name__ == "__main__":

ouropy/genconnection.py

Lines changed: 15 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -23,15 +23,15 @@ def __init__(self):
2323

2424
def get_description(self):
2525
"""Return a descriptive string for the connection"""
26-
name = self.pre_pop.name + ' to ' + self.post_pop.name + '\n'
26+
name = f'{self.pre_pop.name} to {self.post_pop.name}' + '\n'
2727
pre_cell_targets = '\n'.join([str(x) for x in self.pre_cell_targets])
2828
return name + pre_cell_targets
2929

3030
def get_name(self):
3131
if type(self.pre_pop) == str:
32-
return self.pre_pop + ' to ' + str(self.post_pop)
32+
return f'{self.pre_pop} to {str(self.post_pop)}'
3333
else:
34-
return str(self.pre_pop) + ' to ' + str(self.post_pop)
34+
return f'{str(self.pre_pop)} to {str(self.post_pop)}'
3535

3636
def get_properties(self):
3737
"""Get the and make them suitable for pickling"""
@@ -128,12 +128,12 @@ def __init__(self, pre_pop, post_pop,
128128

129129
for idx, curr_cell_pos in enumerate(pre_pop_pos):
130130

131-
curr_dist = []
132-
for post_cell_pos in post_pop_pos:
133-
curr_dist.append(euclidian_dist(curr_cell_pos, post_cell_pos))
134-
131+
curr_dist = [
132+
euclidian_dist(curr_cell_pos, post_cell_pos)
133+
for post_cell_pos in post_pop_pos
134+
]
135135
sort_idc = np.argsort(curr_dist)
136-
closest_cells = sort_idc[0:target_pool]
136+
closest_cells = sort_idc[:target_pool]
137137
picked_cells = np.random.choice(closest_cells,
138138
divergence,
139139
replace=False)
@@ -248,20 +248,18 @@ def __init__(self, pre_pop, post_pop,
248248

249249
for idx, curr_cell_pos in enumerate(pre_pop_pos):
250250

251-
curr_dist = []
252-
for post_cell_pos in post_pop_pos:
253-
curr_dist.append(euclidian_dist(curr_cell_pos, post_cell_pos))
254-
251+
curr_dist = [
252+
euclidian_dist(curr_cell_pos, post_cell_pos)
253+
for post_cell_pos in post_pop_pos
254+
]
255255
sort_idc = np.argsort(curr_dist)
256-
closest_cells = sort_idc[0:target_pool]
256+
closest_cells = sort_idc[:target_pool]
257257
picked_cells = np.random.choice(closest_cells,
258258
divergence,
259259
replace=False)
260260
pre_cell_target.append(picked_cells)
261261
for tar_c in picked_cells:
262262

263-
curr_syns = []
264-
curr_netcons = []
265263
curr_conductances = []
266264

267265
curr_syn = h.pyr2pyr(post_pop[tar_c].soma(0.5))
@@ -293,14 +291,11 @@ def __init__(self, pre_pop, post_pop,
293291
curr_syn.Cdur_nmda = Cdur_nmda
294292
curr_syn.gbar_nmda = gbar_nmda
295293

296-
curr_syns.append(curr_syn)
294+
curr_syns = [curr_syn]
297295
curr_netcon = h.NetCon(pre_pop[idx].soma(0.5)._ref_v,
298296
curr_syn, thr, Delay,
299297
weight, sec=pre_pop[idx].soma)
300-
#curr_gvec = h.Vector()
301-
#curr_gvec.record(curr_syn._ref_g)
302-
#curr_conductances.append(curr_gvec)
303-
curr_netcons.append(curr_netcon)
298+
curr_netcons = [curr_netcon]
304299
netcons.append(curr_netcons)
305300
synapses.append(curr_syns)
306301
conductances.append(curr_conductances)

0 commit comments

Comments
 (0)