-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
executable file
·175 lines (153 loc) · 6.03 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from tqdm import tqdm
import torch
import torchaudio
from torch.utils.data import Dataset
import torchvision
from config import forget_class_num
class SpeechData(Dataset):
def __init__(self, data, label_dict, transform=None):
self.data = data
self.label_dict = label_dict
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self,idx):
waveform = self.data[idx][0]
label = self.data[idx][2]
if label in self.label_dict:
out_labels = self.label_dict.index(label)
return waveform, out_labels
# zero pad to have 1 sec len
class Padding:
def __init__(self):
self.output_len = 16000 # Sample rate
def __call__(self, x):
pad_len = self.output_len - x.shape[-1]
if pad_len > 0:
x = torch.cat([x, torch.zeros([x.shape[0], pad_len])], dim=-1)
elif pad_len < 0:
raise ValueError("no sample exceed 1sec in GSC.")
return x
##### Group data (Forget: 0, Retain: 1) #####
class CustomSpeechData(Dataset):
def __init__(self, data, label_list, transform, forget_list):
self.data = data
self.label_list = label_list
self.transform = transform # Padding
self.forget_list = forget_list
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
waveform = self.data[idx][0]
waveform = self.transform(waveform)
label = self.data[idx][2]
out_labels = self.label_list.index(label)
if out_labels in self.forget_list:
group = 0.0
else:
group = 1.0
return waveform, out_labels, group
##### For adversarial loss #####
class AdvlossData(Dataset):
def __init__(self, forget_data, retain_data):
super().__init__()
self.forget_data = forget_data
self.retain_data = retain_data
self.forget_len = len(forget_data)
self.retain_len = len(retain_data)
def __len__(self):
return self.forget_len + self.retain_len
def __getitem__(self, index):
if(index < self.forget_len):
x = self.forget_data[index][0]
y = self.forget_data[index][1]
group = 0.0
else:
x = self.retain_data[index - self.forget_len][0]
y = self.retain_data[index - self.forget_len][1]
group = 1.0
return x, y, group
##### Make all tensor in a batch the same length by padding with zeros #####
def pad_sequence(batch):
batch = [item.t() for item in batch]
batch = torch.nn.utils.rnn.pad_sequence(batch, batch_first=True, padding_value=0.)
return batch.permute(0, 2, 1)
##### For TS #####
def collate_fn(batch):
# The form of data tuple: waveform, sample_rate, label, speaker_id, utterance_number
tensors, targets = [], []
# Gather in lists, and encode labels as indices
for waveform, label in batch:
tensors += [waveform]
targets += [torch.tensor(label)]
# Group the list of tensors into a batched tensor
tensors = pad_sequence(tensors)
targets = torch.stack(targets)
return tensors, targets
##### For advloss #####
def collate_fn_ver2(batch):
# Form of data tuple: waveform, sample_rate, label, speaker_id, utterance_number
tensors, targets, groups = [], [], []
# Gather in lists, and encode labels as indices
for waveform, label, group in batch:
tensors += [waveform]
targets += [torch.tensor(label)]
groups += [torch.tensor(group)]
# Group the list of tensors into a batched tensor
tensors = pad_sequence(tensors)
targets = torch.stack(targets)
groups = torch.stack(groups)
return tensors, targets, groups
##### Resampling #####
def resample(dataset, target):
forget_data = []
retain_data = []
print("Resampling Dataset....")
for idx in tqdm(range(len(dataset))):
if dataset[idx][1] in target:
forget_data.append(dataset[idx])
else:
retain_data.append(dataset[idx])
return forget_data, retain_data
## Forget and Retrained
def resample_partion(dataset, target, partion_num):
forget_data, retain_data = [], []
print("Begin resampling...")
for idx in tqdm(range(len(dataset))):
if idx <= partion_num:
if dataset[idx][1] in target:
forget_data.append(dataset[idx])
else:
retain_data.append(dataset[idx])
else:
print("Finish Resampling...")
break
return forget_data, retain_data
# 先分群,再各群抓partion_num個
def group_data(dataset, partion_num, label_num):
after_grouping = []
group={}
for i in range(label_num):
group[i]=[]
# 分類
print("Grouping....")
for idx in tqdm(range(len(dataset))):
data, label = dataset[idx]
group[label].append((data, label))
# 每類別各抓partion_num個
print("Take from each class...")
for j in range(label_num):
for k in range(partion_num):
after_grouping.append(group[j][k])
print("Finsh grouping....")
return after_grouping
if __name__ =='__main__':
train_data = torchaudio.datasets.SPEECHCOMMANDS('/sppvenv/code/speech_cnn/data', download = True, subset='training')
val_data = torchaudio.datasets.SPEECHCOMMANDS('/sppvenv/code/speech_cnn/data', download = True, subset='validation')
label_list = sorted(list(set(data[2] for data in val_data)))
# train_dataset = SpeechData(train_data, label_list)
transform = torchvision.transforms.Compose([Padding()])
train_dataset = CustomSpeechData(train_data, label_list, transform, forget_class_num)
train_dataset = torch.utils.data.DataLoader(dataset=train_dataset , shuffle=True, batch_size=32)
# answer = group_data(train_dataset, partion_num=50, label_num=len(label_list))
# print(len(answer))