-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_transformers_classifier_pytorch.py
334 lines (294 loc) · 14.8 KB
/
train_transformers_classifier_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from vncorenlp import VnCoreNLP
from tensorflow.keras.preprocessing.sequence import pad_sequences
import random
from tqdm import tqdm
import pickle
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import torch
import numpy as np
from sklearn.metrics import f1_score, accuracy_score
import os
from transformers import RobertaForSequenceClassification, RobertaConfig, AdamW, RobertaTokenizer, RobertaTokenizerFast, RobertaModel, AutoTokenizer
from datetime import datetime
import glob
def make_mask(batch_ids):
batch_mask = []
for ids in batch_ids:
mask = [int(token_id > 0) for token_id in ids]
batch_mask.append(mask)
return torch.tensor(batch_mask)
def dataloader_from_text(text_file=None, tokenizer=None, classes=[], savetodisk=None, loadformdisk=None, segment=False, max_len=256, batch_size=16, infer=False):
ids_padded, masks, labels = [], [], []
if loadformdisk == None:
#segementer
if segment:
rdrsegmenter = VnCoreNLP("./vncorenlp/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m')
texts = []
print("LOADDING TEXT FILE")
with open(text_file, 'r') as f_r:
for sample in tqdm(f_r):
if infer:
text = sample.strip()
if segment:
text = rdrsegmenter.tokenize(text)
text = ' '.join([' '.join(x) for x in text])
texts.append(text)
else:
splits = sample.strip().split(" ",1)
label = classes.index(splits[0])
text = splits[1]
if segment:
text = rdrsegmenter.tokenize(text)
text = ' '.join([' '.join(x) for x in text])
labels.append(label)
texts.append(text)
print("TEXT TO IDS")
ids = []
for text in tqdm(texts):
encoded_sent = tokenizer.encode(text)
ids.append(encoded_sent)
del texts
# print("PADDING IDS")
ids_padded = pad_sequences(ids, maxlen=max_len, dtype="long", value=0, truncating="post", padding="post")
del ids
# print("CREATE MASK")
# for sent in tqdm(ids_padded):
# masks.append(make_mask(sent))
if savetodisk != None and not infer:
with open(savetodisk, 'wb') as f:
pickle.dump(ids_padded, f)
# pickle.dump(masks, f)
pickle.dump(labels, f)
print("SAVED IDS DATA TO DISK")
else:
print("LOAD FORM DISK")
if loadformdisk != None:
try:
with open(savetodisk, 'rb') as f:
ids_padded = pickle.load(ids_padded, f)
# masks = pickle.load(masks, f)
labels = pickle.load(labels, f)
print("LOADED IDS DATA FORM DISK")
except:
print("LOAD DATA FORM DISK ERROR!")
print("CONVERT TO TORCH TENSOR")
ids_inputs = torch.tensor(ids_padded)
del ids_padded
# masks = torch.tensor(masks)
if not infer:
labels = torch.tensor(labels)
print("CREATE DATALOADER")
if infer:
# input_data = TensorDataset(ids_inputs, masks)
input_data = TensorDataset(ids_inputs)
else:
input_data = TensorDataset(ids_inputs, labels)
# input_data = TensorDataset(ids_inputs, masks, labels)
input_sampler = SequentialSampler(input_data)
dataloader = DataLoader(input_data, sampler=input_sampler, batch_size=batch_size)
print("len dataloader:", len(dataloader))
print("LOAD DATA ALL DONE")
return dataloader
class ROBERTAClassifier(torch.nn.Module):
def __init__(self, num_labels, bert_model, dropout_rate=0.3):
super(ROBERTAClassifier, self).__init__()
if bert_model != None:
self.roberta = bert_model
else:
self.roberta = RobertaModel.from_pretrained("./vinai/phobert-base")
self.d1 = torch.nn.Dropout(dropout_rate)
self.l1 = torch.nn.Linear(768, 64)
self.bn1 = torch.nn.LayerNorm(64)
self.d2 = torch.nn.Dropout(dropout_rate)
self.l2 = torch.nn.Linear(64, num_labels)
def forward(self, input_ids, attention_mask):
_, x = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
x = self.d1(x)
x = self.l1(x)
x = self.bn1(x)
x = torch.nn.Tanh()(x)
x = self.d2(x)
x = self.l2(x)
return x
class BERTClassifier(torch.nn.Module):
def __init__(self, num_labels):
super(BERTClassifier, self).__init__()
bert_classifier_config = RobertaConfig.from_pretrained(
"./vinai/phobert-base/config.json",
from_tf=False,
num_labels = num_labels,
output_hidden_states=False,
)
print("LOAD BERT PRETRAIN MODEL")
self.bert_classifier = RobertaForSequenceClassification.from_pretrained(
"./vinai/phobert-base/pytorch_model.bin",
config=bert_classifier_config
)
def forward(self, input_ids, attention_mask, labels):
output = self.bert_classifier(input_ids=input_ids,
token_type_ids=None,
attention_mask=attention_mask,
labels=labels
)
return output
class ClassifierTrainner():
def __init__(self, bert_model, train_dataloader, valid_dataloader, epochs=10, cuda_device="cpu", save_dir=None):
if cuda_device == "cpu":
self.device == torch.device("cpu")
else:
self.device = torch.device('cuda:{}'.format(cuda_device))
self.model = bert_model
if save_dir != None and os.path.exists(save_dir):
print("Load weight from file:{}".format(save_dir))
self.save_dir = save_dir
epcho_checkpoint_path = glob.glob("{}/model_epoch*".format(self.save_dir))
if len(epcho_checkpoint_path) == 0:
print("No checkpoint found in: {}\nCheck save_dir...".format(self.save_dir))
else:
self.load_checkpoint(epcho_checkpoint_path)
print("Restore weight successful from: {}".format(epcho_checkpoint_path))
else:
self.save_dir = datetime.now().strftime("%d-%m-%Y_%H-%M-%S")
os.makedirs(self.save_dir)
print("Training new model, save to: {}".format(self.save_dir))
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
self.epochs = epochs
# self.batch_size = batch_size
def save_checkpoint(self, save_path):
state_dict = {'model_state_dict': self.model.state_dict()}
torch.save(state_dict, save_path)
print(f'Model saved to ==> {save_path}')
def load_checkpoint(self, load_path):
state_dict = torch.load(load_path, map_location=device)
print(f'Model restored from <== {load_path}')
self.model.load_state_dict(state_dict['model_state_dict'])
@staticmethod
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
F1_score = f1_score(pred_flat, labels_flat, average='macro')
return accuracy_score(pred_flat, labels_flat), F1_score
def train_classifier(self):
self.model.to(self.device)
param_optimizer = list(self.model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5, correct_bias=False)
for epoch_i in range(0, self.epochs):
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, self.epochs))
print('Training...')
total_loss = 0
self.model.train()
train_accuracy = 0
nb_train_steps = 0
train_f1 = 0
best_valid_loss = 999999
best_eval_accuracy = 0
for step, batch in enumerate(self.train_dataloader):
b_input_ids = batch[0].to(self.device)
b_input_mask = make_mask(batch[0]).to(self.device)
b_labels = batch[1].to(self.device)
self.model.zero_grad()
outputs = self.model(b_input_ids,
attention_mask=b_input_mask,
labels=b_labels
)
loss = outputs[0]
total_loss += loss.item()
logits = outputs[1].detach().cpu().numpy()
label_ids = b_labels.cpu().numpy()
tmp_train_accuracy, tmp_train_f1 = self.flat_accuracy(logits, label_ids)
train_accuracy += tmp_train_accuracy
train_f1 += tmp_train_f1
nb_train_steps += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
optimizer.step()
if step % 100 == 0:
print("[TRAIN] Epoch {}/{} | Batch {}/{} | Train Loss={} | Train Acc={}".format(epoch_i, self.epochs, step, len(self.train_dataloader), loss.item(), tmp_train_accuracy))
avg_train_loss = total_loss / len(self.train_dataloader)
print(" Train Accuracy: {0:.4f}".format(train_accuracy/nb_train_steps))
print(" Train F1 score: {0:.4f}".format(train_f1/nb_train_steps))
print(" Train Loss: {0:.4f}".format(avg_train_loss))
print("Running Validation...")
self.model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
eval_f1 = 0
for batch in self.valid_dataloader:
b_input_mask = make_mask(batch[0]).to(self.device)
batch = tuple(t.to(self.device) for t in batch)
b_input_ids, b_labels = batch
with torch.no_grad():
outputs = self.model(b_input_ids,
attention_mask=b_input_mask,
labels=b_labels
)
tmp_eval_loss, logits = outputs[0], outputs[1]
logits = logits.detach().cpu().numpy()
label_ids = b_labels.cpu().numpy()
tmp_eval_accuracy, tmp_eval_f1 = self.flat_accuracy(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
eval_loss += tmp_eval_loss
eval_f1 += tmp_eval_f1
nb_eval_steps += 1
print(" Valid Loss: {0:.4f}".format(eval_loss/nb_eval_steps))
print(" Valid Accuracy: {0:.4f}".format(eval_accuracy/nb_eval_steps))
print(" Valid F1 score: {0:.4f}".format(eval_f1/nb_eval_steps))
if best_valid_loss > eval_loss:
best_valid_loss = eval_loss
best_valid_loss_path = "{}/model_best_valoss.pt".format(self.save_dir)
self.save_checkpoint(best_valid_loss_path)
if best_eval_accuracy > eval_accuracy:
best_eval_accuracy = eval_accuracy
best_eval_accuracy_path = "{}/model_best_valacc.pt".format(self.save_dir)
self.save_checkpoint(best_eval_accuracy_path)
epoch_i_path = "{}/model_epoch{}.pt".format(self.save_dir, epoch_i)
self.save_checkpoint(epoch_i_path)
os.remove("{}/model_epoch{}.pt".format(self.save_dir, epoch_i-1))
print("Training complete!")
def predict_dataloader(self, dataloader, classes, tokenizer):
for batch in dataloader:
batch = tuple(t.to(self.device) for t in batch)
b_input_ids, b_input_mask = batch
with torch.no_grad():
outputs = self.model(b_input_ids,
attention_mask=b_input_mask,
labels=None
)
logits = outputs
logits = logits.detach().cpu().numpy()
pred_flat = np.argmax(logits, axis=1).flatten()
print("[PREDICT] {}:{}".format(classes[int(pred_flat)], tokenizer.decode(b_input_ids)))
def predict_text(self, text, classes, tokenizer, max_len=256):
ids = tokenizer.encode(text)
ids_padded = pad_sequences(ids, maxlen=max_len, dtype="long", value=0, truncating="post", padding="post")
mask = [int(token_id > 0) for token_id in ids_padded]
input_ids = torch.tensor(ids_padded)
intput_mask = torch.tensor(mask)
with torch.no_grad():
logits = self.model(input_ids,
attention_mask=intput_mask,
labels=None
)
logits = logits.detach().cpu().numpy()
pred_flat = np.argmax(logits, axis=1).flatten()
print("[PREDICT] {}:{}".format(classes[int(pred_flat)], text))
def main():
classes = ['__label__sống_trẻ', '__label__thời_sự', '__label__công_nghệ', '__label__sức_khỏe', '__label__giáo_dục', '__label__xe_360', '__label__thời_trang', '__label__du_lịch', '__label__âm_nhạc', '__label__xuất_bản', '__label__nhịp_sống', '__label__kinh_doanh', '__label__pháp_luật', '__label__ẩm_thực', '__label__thế_giới', '__label__thể_thao', '__label__giải_trí', '__label__phim_ảnh']
train_path = 'train.txt'
test_path = 'test.txt'
MAX_LEN = 256
tokenizer = AutoTokenizer.from_pretrained("./vinai/phobert-base", local_files_only=True)
train_dataloader = dataloader_from_text(train_path, tokenizer=tokenizer, classes=classes, savetodisk=None, max_len=MAX_LEN, batch_size=16)
valid_dataloader = dataloader_from_text(test_path, tokenizer=tokenizer, classes=classes, savetodisk=None, max_len=MAX_LEN, batch_size=16)
#bert model
bert_classifier_model = BERTClassifier(len(classes))
#train model
bert_classifier_trainer = ClassifierTrainner(bert_model=bert_classifier_model, train_dataloader=train_dataloader, valid_dataloader=valid_dataloader, epochs=10, cuda_device="1") #cuda_device: "cpu"=cpu hoac 0=gpu0, 1=gpu1,
bert_classifier_trainer.train_classifier()
main()