-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataloader.py
51 lines (45 loc) · 1.8 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import keras
from phobert_embeding import get_emb_vector
from tensorflow.python.keras.utils.data_utils import Sequence
from keras.utils.np_utils import to_categorical
class DataGenerator(Sequence):
'Generates data for Keras'
def __init__(self, ids, labels, batch_size=16, max_seq_len=256, feature_len=768, n_classes=18, shuffle=True):
self.max_seq_len = max_seq_len
self.feature_len = feature_len
self.batch_size = batch_size
self.labels = labels
self.ids = ids
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.ids) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
X, y = self.__data_generation(indexes)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.ids))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, idx_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, self.max_seq_len, self.feature_len))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, idx in enumerate(idx_temp):
X[i,] = get_emb_vector(self.ids[idx])
# Store class
y[i] = self.labels[idx]
# X = X[:,:,:,np.newaxis]
# y = to_categorical(y, num_classes=self.n_classes)
# print(y.shape)
# exit()
return X, y