-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsieve_cluster.c
347 lines (315 loc) · 11.5 KB
/
sieve_cluster.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#include <stdio.h>
#include <stdlib.h>
#define FUNC_is_prime_in_sieve 1
#define FUNC_gcd_ui 1
#include "sieve.h"
#include "ptypes.h"
#include "util.h"
#include "primality.h"
#define NSMALLPRIMES 168
static const unsigned short sprimes[NSMALLPRIMES] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997};
typedef struct {
uint32_t nmax;
uint32_t nsize;
UV* list;
} vlist;
#define INIT_VLIST(v) \
v.nsize = 0; \
v.nmax = 100; \
New(0, v.list, v.nmax, UV);
#define PUSH_VLIST(v, n) \
do { \
if (v.nsize >= v.nmax) \
Renew(v.list, v.nmax += 100, UV); \
v.list[v.nsize++] = n; \
} while (0)
#define ADDVAL32(v, n, max, val) \
do { if (n >= max) Renew(v, max += 512, UV); v[n++] = val; } while (0)
#define SWAPL32(l1, n1, m1, l2, n2, m2) \
{ UV t_, *u_ = l1; l1 = l2; l2 = u_; \
t_ = n1; n1 = n2; n2 = t_; \
t_ = m1; m1 = m2; m2 = t_; }
static int is_admissible(uint32_t nc, const uint32_t* cl) {
uint32_t i, j, c;
char rset[sprimes[NSMALLPRIMES-1]];
if (nc > NSMALLPRIMES) return 1; /* TODO */
for (i = 0; i < nc; i++) {
uint32_t p = sprimes[i];
memset(rset, 0, p);
for (c = 0; c < nc; c++)
rset[cl[c] % p] = 1;
for (j = 0; j < p; j++)
if (rset[j] == 0)
break;
if (j == p) /* All values were 1 */
return 0;
}
return 1;
}
/* Given p prime, is this a cluster? */
static int is_cluster(UV p, uint32_t nc, const uint32_t* cl) {
uint32_t c;
for (c = 1; c < nc; c++)
if (!is_prob_prime(p+cl[c]))
break;
return (c == nc);
}
/* This is fine for small ranges. Low overhead. */
UV* sieve_cluster_simple(UV beg, UV end, uint32_t nc, const uint32_t* cl, UV* numret)
{
vlist retlist;
INIT_VLIST(retlist);
if (beg <= 2 && end >= 2 && is_cluster(2, nc, cl)) PUSH_VLIST(retlist, 2);
if (beg <= 3 && end >= 3 && is_cluster(3, nc, cl)) PUSH_VLIST(retlist, 3);
if (beg <= 5 && end >= 5 && is_cluster(5, nc, cl)) PUSH_VLIST(retlist, 5);
if (beg < 7) beg = 7;
/* If not admissible, then don't keep looking. */
if (!is_admissible(nc, cl) && end > sprimes[nc])
end = sprimes[nc];
if (beg <= end) {
uint32_t c;
unsigned char* segment;
UV seg_base, seg_beg, seg_end;
void* ctx = start_segment_primes(beg, end, &segment);
while (next_segment_primes(ctx, &seg_base, &seg_beg, &seg_end)) {
UV sp, last_sieve_cluster = (seg_end >= cl[nc-1]) ? seg_end-cl[nc-1] : 0;
START_DO_FOR_EACH_SIEVE_PRIME( segment, seg_base, seg_beg, seg_end )
if (p <= last_sieve_cluster) {
sp = p - seg_base;
for (c = 1; c < nc; c++)
if (!is_prime_in_sieve(segment, sp+cl[c]))
break;
if (c == nc)
PUSH_VLIST(retlist,p);
} else {
if (is_cluster(p, nc, cl))
PUSH_VLIST(retlist, p);
}
END_DO_FOR_EACH_SIEVE_PRIME
}
end_segment_primes(ctx);
}
*numret = retlist.nsize;
return retlist.list;
}
#define addmodded(r,a,b,n) do { r = a + b; if (r >= n) r -= n; } while(0)
UV* sieve_cluster(UV low, UV high, uint32_t nc, const uint32_t* cl, UV* numret)
{
vlist retlist;
UV i, ppr, nres, allocres;
uint32_t const targres = 100000;
UV *residues, *cres, num_mr = 0, num_lucas = 0;
uint32_t pp_0, pp_1, pp_2, *resmod_0, *resmod_1, *resmod_2;
uint32_t rem_0, rem_1, rem_2, remadd_0, remadd_1, remadd_2;
uint32_t pi, startpi = 1, maxpi = 150;
uint32_t lastspr = sprimes[maxpi-1];
uint32_t c, smallnc;
char crem_0[43*47], crem_1[53*59], crem_2[61*67], **VPrem;
if ((UV_MAX - cl[nc-1]) < high) return 0; /* Overflow */
if ( ((high-low) < 10000)
|| (nc == 3 && ((high>>31) >> 16) == 0) /* sieving large vals is slow */
|| (nc == 2 && ((high>>31) >> 27) == 0)
|| (nc < 2) )
return sieve_cluster_simple(low, high, nc, cl, numret);
if (!(low&1)) low++;
if (!(high&1)) high--;
INIT_VLIST(retlist);
if (low < lastspr) {
UV t, chigh = (high > lastspr) ? lastspr : high;
UV* s = sieve_cluster_simple(low, chigh, nc, cl, &t);
for (i = 0; i < t; i++)
PUSH_VLIST(retlist, s[i]);
Safefree(s);
low = chigh + 2;
}
if (low > high) {
*numret = retlist.nsize;
return retlist.list;
}
if (low&1) low--;
/* Determine the primorial size and acceptable residues */
New(0, residues, allocres = 1024, UV);
{
UV remr, *res2, allocres2, nres2, maxppr;
/* Calculate residues for a small primorial */
for (pi = 2, ppr = 1, i = 0; i <= pi; i++) ppr *= sprimes[i];
remr = low % ppr;
nres = 0;
for (i = 1; i <= ppr; i += 2) {
for (c = 0; c < nc; c++) {
UV v = (remr + i + cl[c]) % ppr;
if (gcd_ui(v, ppr) != 1) break;
}
if (c == nc)
ADDVAL32(residues, nres, allocres, i);
}
/* Raise primorial size until we have plenty of residues */
New(0, res2, allocres2 = 1024, UV);
maxppr = high - low;
#if BITS_PER_WORD == 64
while (pi++ < 12) {
#else
while (pi++ < 8) {
#endif
uint32_t j, p = sprimes[pi];
UV r, newppr = ppr * p;
if (nres == 0 || nres > targres/(p/2) || newppr > maxppr) break;
MPUverbose(2, "cluster sieve found %"UVuf" residues mod %"UVuf"\n", nres, ppr);
remr = low % newppr;
nres2 = 0;
for (i = 0; i < p; i++) {
for (j = 0; j < nres; j++) {
r = i*ppr + residues[j];
for (c = 0; c < nc; c++) {
UV v = remr + r + cl[c];
if ((v % p) == 0) break;
}
if (c == nc)
ADDVAL32(res2, nres2, allocres2, r);
}
}
ppr = newppr;
SWAPL32(residues, nres, allocres, res2, nres2, allocres2);
}
startpi = pi;
Safefree(res2);
}
MPUverbose(1, "cluster sieve using %"UVuf" residues mod %"UVuf"\n", nres, ppr);
/* Return if not admissible, maybe with a single small value */
if (nres == 0) {
Safefree(residues);
*numret = retlist.nsize;
return retlist.list;
}
/* Pre-mod the residues with first two primes for fewer modulos every chunk */
{
uint32_t p1 = sprimes[startpi+0], p2 = sprimes[startpi+1];
uint32_t p3 = sprimes[startpi+2], p4 = sprimes[startpi+3];
uint32_t p5 = sprimes[startpi+4], p6 = sprimes[startpi+5];
pp_0 = p1*p2; pp_1 = p3*p4; pp_2 = p5*p6;
memset(crem_0, 1, pp_0);
memset(crem_1, 1, pp_1);
memset(crem_2, 1, pp_2);
/* Mark remainders that indicate a composite for this residue. */
for (i = 0; i < p1; i++) { crem_0[i*p1]=0; crem_0[i*p2]=0; }
for ( ; i < p2; i++) { crem_0[i*p1]=0; }
for (i = 0; i < p3; i++) { crem_1[i*p3]=0; crem_1[i*p4]=0; }
for ( ; i < p4; i++) { crem_1[i*p3]=0; }
for (i = 0; i < p5; i++) { crem_2[i*p5]=0; crem_2[i*p6]=0; }
for ( ; i < p6; i++) { crem_2[i*p5]=0; }
for (c = 1; c < nc; c++) {
uint32_t c1=cl[c], c2=cl[c], c3=cl[c], c4=cl[c], c5=cl[c], c6=cl[c];
if (c1 >= p1) c1 %= p1;
if (c2 >= p2) c2 %= p2;
for (i = 1; i <= p1; i++) { crem_0[i*p1-c1]=0; crem_0[i*p2-c2]=0; }
for ( ; i <= p2; i++) { crem_0[i*p1-c1]=0; }
if (c3 >= p3) c3 %= p3;
if (c4 >= p4) c4 %= p4;
for (i = 1; i <= p3; i++) { crem_1[i*p3-c3]=0; crem_1[i*p4-c4]=0; }
for ( ; i <= p4; i++) { crem_1[i*p3-c3]=0; }
if (c5 >= p5) c5 %= p5;
if (c6 >= p6) c6 %= p6;
for (i = 1; i <= p5; i++) { crem_2[i*p5-c5]=0; crem_2[i*p6-c6]=0; }
for ( ; i <= p6; i++) { crem_2[i*p5-c5]=0; }
}
New(0, resmod_0, nres, uint32_t);
New(0, resmod_1, nres, uint32_t);
New(0, resmod_2, nres, uint32_t);
for (i = 0; i < nres; i++) {
resmod_0[i] = residues[i] % pp_0;
resmod_1[i] = residues[i] % pp_1;
resmod_2[i] = residues[i] % pp_2;
}
}
/* Precalculate acceptable residues for more primes */
New(0, VPrem, maxpi, char*);
memset(VPrem, 0, maxpi);
for (pi = startpi+6; pi < maxpi; pi++) {
uint32_t p = sprimes[pi];
New(0, VPrem[pi], p, char);
memset(VPrem[pi], 1, p);
}
for (pi = startpi+6, smallnc = 0; pi < maxpi; pi++) {
uint32_t p = sprimes[pi];
char* prem = VPrem[pi];
prem[0] = 0;
while (smallnc < nc && cl[smallnc] < p) smallnc++;
for (c = 1; c < smallnc; c++) prem[p-cl[c]] = 0;
for ( ; c < nc; c++) prem[p-(cl[c]%p)] = 0;
}
New(0, cres, nres, UV);
rem_0 = low % pp_0; remadd_0 = ppr % pp_0;
rem_1 = low % pp_1; remadd_1 = ppr % pp_1;
rem_2 = low % pp_2; remadd_2 = ppr % pp_2;
/* Loop over their range in chunks of size 'ppr' */
while (low <= high) {
uint32_t r, nr, remr, ncres;
/* Reduce the allowed residues for this chunk using more primes */
{ /* Start making a list of this chunk's residues using three pairs */
for (r = 0, ncres = 0; r < nres; r++) {
addmodded(remr, rem_0, resmod_0[r], pp_0);
if (crem_0[remr]) {
addmodded(remr, rem_1, resmod_1[r], pp_1);
if (crem_1[remr]) {
addmodded(remr, rem_2, resmod_2[r], pp_2);
if (crem_2[remr]) {
cres[ncres++] = residues[r];
}
}
}
}
addmodded(rem_0, rem_0, remadd_0, pp_0);
addmodded(rem_1, rem_1, remadd_1, pp_1);
addmodded(rem_2, rem_2, remadd_2, pp_2);
}
/* Sieve through more primes one at a time, removing residues. */
for (pi = startpi+6; pi < maxpi && ncres > 0; pi++) {
uint32_t p = sprimes[pi];
uint32_t rem = low % p;
char* prem = VPrem[pi];
/* Check divisibility of each remaining residue with this p */
/* If we extended prem we could remove the add in the loop below */
if (startpi <= 9) { /* Residues are 32-bit */
for (r = 0, nr = 0; r < ncres; r++) {
if (prem[ (rem+(uint32_t)cres[r]) % p ])
cres[nr++] = cres[r];
}
} else { /* Residues are 64-bit */
for (r = 0, nr = 0; r < ncres; r++) {
if (prem[ (rem+cres[r]) % p ])
cres[nr++] = cres[r];
}
}
ncres = nr;
}
MPUverbose(3, "cluster sieve range has %u residues left\n", ncres);
/* Now check each of the remaining residues for inclusion */
for (r = 0; r < ncres; r++) {
UV p = low + cres[r];
if (p > high) break;
/* PRP test. Split to save time. */
for (c = 0; c < nc; c++)
if (num_mr++,!is_euler_plumb_pseudoprime(p+cl[c]))
break;
if (c < nc) continue;
for (c = 0; c < nc; c++)
if (num_lucas++,!is_almost_extra_strong_lucas_pseudoprime(p+cl[c], 1))
break;
if (c < nc) continue;
PUSH_VLIST(retlist, p);
}
low += ppr;
if (low < ppr) low = UV_MAX;
}
MPUverbose(1, "cluster sieve ran %"UVuf" MR and %"UVuf" Lucas tests\n", num_mr, num_lucas);
for (pi = startpi+6; pi < maxpi; pi++)
Safefree(VPrem[pi]);
Safefree(VPrem);
Safefree(resmod_0);
Safefree(resmod_1);
Safefree(resmod_2);
Safefree(cres);
Safefree(residues);
*numret = retlist.nsize;
return retlist.list;
}