-
Notifications
You must be signed in to change notification settings - Fork 3
/
lane_utils.py
263 lines (215 loc) · 11 KB
/
lane_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# %matplotlib inline
import numpy as np
import cv2
import glob
def find_lane_pixels(binary_warped, img_name):
"""
Get the X and Y coordinates belonging to the left and
right lane lines in the binary warped image.
"""
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# plt.plot(histogram)
# plt.savefig('media/output_images/hist_{}'.format(img_name), bbox_inches='tight')
# plt.close()
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# HYPERPARAMETERS
# Choose the number of sliding windows
nwindows = 9
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
### TO-DO: Find the four below boundaries of the window ###
win_xleft_low = leftx_current - margin # Update this
win_xleft_high = leftx_current + margin # Update this
win_xright_low = rightx_current - margin # Update this
win_xright_high = rightx_current + margin # Update this
# Draw the windows on the visualization image
# cv2.rectangle(out_img,(win_xleft_low,win_y_low),
# (win_xleft_high,win_y_high),(0,255,0), 2)
# cv2.rectangle(out_img,(win_xright_low,win_y_low),
# (win_xright_high,win_y_high),(0,255,0), 2)
### TO-DO: Identify the nonzero pixels in x and y within the window ###
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# print(good_left_inds.shape)
### TO-DO: If you found > minpix pixels, recenter next window ###
### (`right` or `leftx_current`) on their mean position ###
if len(good_left_inds) > minpix:
leftx_current = np.mean(nonzerox[good_left_inds]).astype(np.int)
if len(good_right_inds) > minpix:
rightx_current = np.mean(nonzerox[good_right_inds]).astype(np.int)
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty, out_img
def fit_polynomial(binary_warped, img_name):
"""
Given the binary warped image, find the pixels belonging
to both the lane lines and fit a quadratic polynomial to
those pixels to return two polynomial fits - one for each
line.
"""
# Find our lane pixels first
leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped, img_name)
### TO-DO: Fit a second order polynomial to each using `np.polyfit` ###
left_fit = np.polyfit(lefty, leftx, deg=2)
right_fit = np.polyfit(righty, rightx, deg=2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
try:
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
except TypeError:
# Avoids an error if `left` and `right_fit` are still none or incorrect
print('The function failed to fit a line!')
left_fitx = 1*ploty**2 + 1*ploty
right_fitx = 1*ploty**2 + 1*ploty
## Visualization ##
# Colors in the left and right lane regions
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
# Plots the left and right polynomials on the lane lines
# plt.plot(left_fitx, ploty, color='yellow')
# plt.plot(right_fitx, ploty, color='yellow')
return out_img, left_fitx, right_fitx, ploty, left_fit, right_fit, leftx, lefty, rightx, righty
def fit_poly(img_shape, leftx, lefty, rightx, righty):
"""
Given the left and right lane line coordinates,
fit two polynomials to them.
"""
### Fit a second order polynomial to each with np.polyfit() ###
left_fit = np.polyfit(lefty, leftx, deg=2)
right_fit = np.polyfit(righty, rightx, deg=2)
# Generate x and y values for plotting
ploty = np.linspace(0, img_shape[0]-1, img_shape[0])
### Calc both polynomials using ploty, left_fit and right_fit ###
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
return left_fit, right_fit, left_fitx, right_fitx, ploty
def search_around_poly(binary_warped, left_fit, right_fit):
"""
In case of an already calculated fit, search for pixels within
a margin to identify the pixels belonging to the lane lines,
instead of using a sliding window based approach again.
"""
# HYPERPARAMETER
# Choose the width of the margin around the previous polynomial to search
# The quiz grader expects 100 here, but feel free to tune on your own!
margin = 100
# Grab activated pixels
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
### Set the area of search based on activated x-values ###
### within the +/- margin of our polynomial function ###
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit new polynomials
left_fit, right_fit, left_fitx, right_fitx, ploty = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty)
## Visualization ##
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin,
ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin,
ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.5, 0)
# Plot the polynomial lines onto the image
# plt.plot(left_fitx, ploty, color='yellow')
# plt.plot(right_fitx, ploty, color='yellow')
## End visualization steps ##
return result, left_fitx, right_fitx, ploty, left_fit, right_fit, leftx, lefty, rightx, righty
def get_scaled_fits(leftx, lefty, rightx, righty, ym_per_pix, xm_per_pix):
"""
Return the left and polynomial fits taking real-world scale into account
"""
left_fit = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
return left_fit, right_fit
def measure_curvature_pixels(im, ploty, left_fit, right_fit, xm_per_pix, ym_per_pix):
'''
Calculates the curvature of polynomial functions in pixels.
'''
# Define y-value where we want radius of curvature
# We'll choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# print(ym_per_pix)
# print(left_fit)
# print(y_eval)
# Calculation of R_curve (radius of curvature)
left_curverad = ((1 + (2*left_fit[0]*y_eval*ym_per_pix + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0])
right_curverad = ((1 + (2*right_fit[0]*y_eval*ym_per_pix + right_fit[1])**2)**1.5) / np.absolute(2*right_fit[0])
y = im.shape[0]-1
bottom_left = left_fit[0]*y**2 + left_fit[1]*y + left_fit[2]
bottom_right = right_fit[0]*y**2 + right_fit[1]*y + right_fit[2]
center = (bottom_left + bottom_right) / 2
diff = center - im.shape[1]//2
left_diff = im.shape[1]//2 - bottom_left
right_diff = bottom_right - im.shape[1]//2
diff_real = diff * xm_per_pix
ldiff_real = left_diff * xm_per_pix
rdiff_real = right_diff * xm_per_pix
return left_curverad, right_curverad, np.round(diff_real, 2), np.round(ldiff_real, 2), np.round(rdiff_real, 2)