forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresize_lora_gui.py
250 lines (220 loc) · 7.13 KB
/
resize_lora_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
import subprocess
import os
import sys
from .common_gui import (
get_saveasfilename_path,
get_file_path,
scriptdir,
list_files,
create_refresh_button, setup_environment
)
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
folder_symbol = "\U0001f4c2" # 📂
refresh_symbol = "\U0001f504" # 🔄
save_style_symbol = "\U0001f4be" # 💾
document_symbol = "\U0001F4C4" # 📄
PYTHON = sys.executable
def resize_lora(
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
):
# Check for caption_text_input
if model == "":
log.info("Invalid model file")
return
# Check if source model exist
if not os.path.isfile(model):
log.info("The provided model is not a file")
return
if dynamic_method == "sv_ratio":
if float(dynamic_param) < 2:
log.info(
f"Dynamic parameter for {dynamic_method} need to be 2 or greater..."
)
return
if dynamic_method == "sv_fro" or dynamic_method == "sv_cumulative":
if float(dynamic_param) < 0 or float(dynamic_param) > 1:
log.info(
f"Dynamic parameter for {dynamic_method} need to be between 0 and 1..."
)
return
# Check if save_to end with one of the defines extension. If not add .safetensors.
if not save_to.endswith((".pt", ".safetensors")):
save_to += ".safetensors"
if device == "":
device = "cuda"
run_cmd = [
rf"{PYTHON}",
rf"{scriptdir}/sd-scripts/networks/resize_lora.py",
"--save_precision",
save_precision,
"--save_to",
rf"{save_to}",
"--model",
rf"{model}",
"--new_rank",
str(new_rank),
"--device",
device,
]
# Conditional checks for dynamic parameters
if dynamic_method != "None":
run_cmd.append("--dynamic_method")
run_cmd.append(dynamic_method)
run_cmd.append("--dynamic_param")
run_cmd.append(str(dynamic_param))
# Check for verbosity
if verbose:
run_cmd.append("--verbose")
env = setup_environment()
# Reconstruct the safe command string for display
command_to_run = " ".join(run_cmd)
log.info(f"Executing command: {command_to_run}")
# Run the command in the sd-scripts folder context
subprocess.run(run_cmd, env=env)
log.info("Done resizing...")
###
# Gradio UI
###
def gradio_resize_lora_tab(
headless=False,
):
current_model_dir = os.path.join(scriptdir, "outputs")
current_save_dir = os.path.join(scriptdir, "outputs")
def list_models(path):
nonlocal current_model_dir
current_model_dir = path
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
def list_save_to(path):
nonlocal current_save_dir
current_save_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
with gr.Tab("Resize LoRA"):
gr.Markdown("This utility can resize a LoRA.")
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
with gr.Group(), gr.Row():
model = gr.Dropdown(
label="Source LoRA (path to the LoRA to resize)",
interactive=True,
choices=[""] + list_models(current_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
model,
lambda: None,
lambda: {"choices": list_models(current_model_dir)},
"open_folder_small",
)
button_lora_a_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_lora_a_model_file.click(
get_file_path,
inputs=[model, lora_ext, lora_ext_name],
outputs=model,
show_progress=False,
)
save_to = gr.Dropdown(
label="Save to (path for the LoRA file to save...)",
interactive=True,
choices=[""] + list_save_to(current_save_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
save_to,
lambda: None,
lambda: {"choices": list_save_to(current_save_dir)},
"open_folder_small",
)
button_save_to = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_save_to.click(
get_saveasfilename_path,
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
show_progress=False,
)
model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_models(path)),
inputs=model,
outputs=model,
show_progress=False,
)
save_to.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
inputs=save_to,
outputs=save_to,
show_progress=False,
)
with gr.Row():
new_rank = gr.Slider(
label="Desired LoRA rank",
minimum=1,
maximum=1024,
step=1,
value=4,
interactive=True,
)
dynamic_method = gr.Radio(
choices=["None", "sv_ratio", "sv_fro", "sv_cumulative"],
value="sv_fro",
label="Dynamic method",
interactive=True,
)
dynamic_param = gr.Textbox(
label="Dynamic parameter",
value="0.9",
interactive=True,
placeholder="Value for the dynamic method selected.",
)
with gr.Row():
verbose = gr.Checkbox(label="Verbose logging", value=True)
save_precision = gr.Radio(
label="Save precision",
choices=["fp16", "bf16", "float"],
value="fp16",
interactive=True,
)
device = gr.Radio(
label="Device",
choices=[
"cpu",
"cuda",
],
value="cuda",
interactive=True,
)
convert_button = gr.Button("Resize model")
convert_button.click(
resize_lora,
inputs=[
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
],
show_progress=False,
)