-
Notifications
You must be signed in to change notification settings - Fork 10
/
utils.py
237 lines (179 loc) · 7.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch._utils
import torch
import torch.nn.functional as F
import argparse
from sklearn.metrics import precision_recall_fscore_support, average_precision_score
import numpy as np
def softmax(x,ax):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=ax)
def conditional_t(y_pred, y_gt, y_gt_mask, thresh=0.5, avg=True):
n_samples, n_classes = y_pred.shape
assert y_pred.shape == y_gt.shape
prec, rec = np.ones((n_classes, n_classes)) * -1.0, np.ones((n_classes, n_classes)) * -1.0
maps = np.ones((n_classes, n_classes)) * -1.0
n_occurs = np.zeros((n_classes, n_classes))
for c_j in range(n_classes):
y_gt_sub = y_gt[y_gt_mask[:, c_j] == 1] # contains the subset of samples where c_j exists
y_pred_sub = y_pred[y_gt_mask[:, c_j] == 1]
pr_j, re_j, f1_j, n_j = precision_recall_fscore_support(y_gt_sub, (y_pred_sub >= thresh).astype(np.uint8),
average=None)
map_j = average_precision_score(y_gt_sub, y_pred_sub, average=None)
for c_i in range(n_classes):
if c_i == c_j:
continue
if n_j[c_i] == 0:
continue
n_occurs[c_i, c_j] = n_j[c_i]
if np.isnan(pr_j[c_i]) or np.isnan(re_j[c_i]):
prec[c_i, c_j] = 0
rec[c_i, c_j] = 0
else:
prec[c_i, c_j] = pr_j[c_i]
rec[c_i, c_j] = re_j[c_i]
if np.isnan(map_j[c_i]):
maps[c_i, c_j] = 0
else:
maps[c_i, c_j] = map_j[c_i]
if avg:
return np.mean(prec[prec != -1]), np.mean(rec[rec != -1]), n_occurs, np.mean(maps[maps != -1])
else:
return prec, rec, n_occurs, maps
def avg_scores(score):
return np.mean(score[score >= 0]) * 100
def get_f1(prec, rec):
return 2 * (prec * rec) / (prec + rec + 1e-9)
def standard_metric(y_pred, y_gt, thresh=0.5):
y_pred = np.concatenate(y_pred, 0)
y_gt = np.concatenate(y_gt, 0)
pr, re, _, n = precision_recall_fscore_support(y_gt, (y_pred >= thresh).astype(np.uint8), average=None)
maps = average_precision_score(y_gt, y_pred, average=None)
return pr, re, n, maps
def conditional_metric(y_pred, y_gt, t=0, thresh=0.5, avg=True):
"""
The official implementation of the action-conditional metrics.
y_pred is a list of un-thresholded predictions [(T1, C), (T2, C), ...]. Each element of the list is a different video, where the shape is (Time, #Classes).
y_gt is a list of binary ground-truth labels [(T1, C), (T2, C), ...]. Each element of the list is a different video, where the shape is (Time, #Classes).
t is an integer. If =0, measures in-timestep coocurrence. If >0, it measures conditional score of succeeding
actions (i.e. if c_i follows c_j). If <0 it measure conditional score of preceeding actions (i.e. if c_i preceeds c_j).
thresh is a value in range (0, 1) which binarizes the predicted probabilities
avg determines whether it returns a single score or class-wise scores
Returns
prec: the action-conditional precision score
rec: the action-conditional recall score
n_s: the number of samples for the pair of actions. Has shape (#Classes, #Classes).
map: the action-conditional mAP score
"""
y_pred = np.concatenate(y_pred, 0)
if t == 0:
y_gt = np.concatenate(y_gt, 0).astype(np.uint8)
return conditional_t(y_pred, y_gt, y_gt, thresh, avg)
else:
y_gt_mask = []
for vid_y_gt in y_gt:
if t > 0: # looks at previous t time-steps
cumsum = np.cumsum(vid_y_gt, 0)
rolled = np.roll(cumsum, t, 0)
rolled[:t] = 0
n_in_last_t = cumsum - rolled
else: # looks at next 0-t time-steps
vid_y_gt_flipped = np.flip(vid_y_gt, 0)
cumsum = np.cumsum(vid_y_gt_flipped, 0)
rolled = np.roll(cumsum, t, 0)
rolled[:0 - t] = 0
n_in_last_t = cumsum - rolled
n_in_last_t = np.flip(n_in_last_t, 0)
n_in_last_t = np.clip(n_in_last_t, 0, 1)
masked = n_in_last_t - vid_y_gt
# 1: present before/after, but not in current
# 0: present before/after and in current, or not present before/after and not in current
# -1: not present before/after and in current
masked = np.clip(masked, 0, 1)
y_gt_mask.append(masked)
y_gt = np.concatenate(y_gt, 0).astype(np.uint8)
y_gt_mask = np.concatenate(y_gt_mask, 0).astype(np.uint8)
return conditional_t(y_pred, y_gt, y_gt_mask, thresh, avg)
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if isinstance(size, torch.Size):
size = tuple(int(x) for x in size)
return F.interpolate(input, size, scale_factor, mode)
def sampled_25(probs, labels, mask):
"""
Approximate version of the charades evaluation function
"""
valid_t = int(sum(mask))
p1_ = probs[:valid_t, :]
l1_ = labels[:valid_t, :]
sc = valid_t / 25.
p1 = p1_[1::int(sc), :][:25, :]
l1 = l1_[1::int(sc), :][:25, :]
return p1, l1
def sampled_25_inference(probs, labels, apm):
"""
Approximate version of the charades evaluation function
"""
valid_t = probs.shape[0]
if valid_t>25:
p1_ = probs[:valid_t, :]
l1_ = labels[:valid_t, :]
sc = valid_t / 25.
p1 = p1_[1::int(sc), :][:25, :]
l1 = l1_[1::int(sc), :][:25, :]
apm.add(p1, l1)
def mask_probs(probs, mask):
valid_t = int(sum(mask))
p1_ = probs[:valid_t, :]
return p1_
def focal_loss(preds, targets):
'''
Action focal loss.
'''
targets=targets.transpose(1,2)
pos_inds = targets.eq(1).float()
neg_inds = targets.lt(1).float()
neg_weights = torch.pow(1 - targets, 4)
loss = 0
for pred in preds:
pred = torch.clamp(torch.sigmoid(pred), min=1e-4, max=1 - 1e-4)
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds
num_pos = pos_inds.float().sum()
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
if num_pos == 0:
loss = loss - neg_loss
else:
loss = loss - (pos_loss + neg_loss) / num_pos
return loss / len(preds)
def gaussian1D(ss, sigma=1):
m = (ss - 1.) / 2.
x = np.ogrid[-m:m + 1]
h = np.exp(-(x * x ) / (sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def generate_gaussian(heatmap, center, radius, tau=3, k=1):
diameter = (2 * radius + 1)
gaussian = gaussian1D(diameter, sigma=diameter/tau)
t = int(center)
T = heatmap.shape[0]
left, right = min(t, radius), min(T - t, radius + 1)
masked_heatmap = heatmap[t - left:t + right]
masked_gaussian = gaussian[radius - left:radius + right]
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
return heatmap
def video_to_tensor(pic):
return torch.from_numpy(pic.transpose([3,0,1,2]))
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')