This example will copy the values from Kafka into out.jsonlines
.
morpheus run pipeline-nlp --viz_file=basic_usage_img/simple_identity.png \
from-kafka --bootstrap_servers localhost:9092 --input_topic test_pcap \
deserialize \
serialize \
to-file --filename out.jsonlines
This example will only copy the fields 'timestamp', 'src_ip' and 'dest_ip' from examples/data/pcap_dump.jsonlines
to
out.jsonlines
.
morpheus run pipeline-nlp --viz_file=basic_usage_img/remove_fields_from_json_objects.png \
from-file --filename examples/data/pcap_dump.jsonlines \
deserialize \
serialize --include 'timestamp' --include 'src_ip' --include 'dest_ip' \
to-file --filename out.jsonlines
This example will report the throughput on the command line.
$ morpheus run pipeline-nlp --viz_file=basic_usage_img/monitor_throughput.png \
from-file --filename examples/data/pcap_dump.jsonlines \
deserialize \
monitor --description "Lines Throughput" --smoothing 0.1 --unit "lines" \
serialize \
to-file --filename out.jsonlines
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Lines Throughput[Complete]: 93085 lines [00:04, 19261.06 lines/s]
Pipeline visualization saved to basic_usage_img/monitor_throughput.png
This example will report the throughput for each stage independently.
$ morpheus run pipeline-nlp --viz_file=basic_usage_img/multi_monitor_throughput.png \
from-file --filename examples/data/pcap_dump.jsonlines \
monitor --description "From File Throughput" \
deserialize \
monitor --description "Deserialize Throughput" \
serialize \
monitor --description "Serialize Throughput" \
to-file --filename out.jsonlines --overwrite
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
From File Throughput[Complete]: 93085 messages [00:00, 93852.05 messages/s]
Deserialize Throughput[Complete]: 93085 messages [00:05, 16898.32 messages/s]
Serialize Throughput[Complete]: 93085 messages [00:08, 11110.10 messages/s]
Pipeline visualization saved to basic_usage_img/multi_monitor_throughput.png
This example shows an NLP Pipeline which uses most stages available in Morpheus.
$ morpheus run --num_threads=8 --pipeline_batch_size=1024 --model_max_batch_size=32 \
pipeline-nlp --viz_file=basic_usage_img/nlp_kitchen_sink.png \
from-file --filename examples/data/pcap_dump.jsonlines \
deserialize \
preprocess \
inf-triton --model_name=sid-minibert-onnx --server_url=localhost:8001 \
monitor --description "Inference Rate" --smoothing=0.001 --unit "inf" \
add-class \
filter --threshold=0.8 \
serialize --include 'timestamp' --exclude '^_ts_' \
to-kafka --bootstrap_servers localhost:9092 --output_topic "inference_output" \
monitor --description "ToKafka Rate" --smoothing=0.001 --unit "msg"
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Inference Rate[Complete]: 93085 inf [00:07, 12334.49 inf/s]
ToKafka Rate[Complete]: 93085 msg [00:07, 13297.85 msg/s]
Pipeline visualization saved to basic_usage_img/nlp_kitchen_sink.png