forked from AI4Finance-Foundation/FinRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
158 lines (145 loc) · 5.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from finrl.config import (
INDICATORS,
TRAIN_START_DATE,
TRAIN_END_DATE,
ERL_PARAMS,
RLlib_PARAMS,
SAC_PARAMS,
)
from finrl.config_tickers import DOW_30_TICKER
from finrl.finrl_meta.data_processor import DataProcessor
# construct environment
from finrl.finrl_meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
def train(
start_date,
end_date,
ticker_list,
data_source,
time_interval,
technical_indicator_list,
drl_lib,
env,
model_name,
if_vix=True,
**kwargs
):
# download data
dp = DataProcessor(data_source, **kwargs)
data = dp.download_data(ticker_list, start_date, end_date, time_interval)
data = dp.clean_data(data)
data = dp.add_technical_indicator(data, technical_indicator_list)
if if_vix:
data = dp.add_vix(data)
price_array, tech_array, turbulence_array = dp.df_to_array(data, if_vix)
env_config = {
"price_array": price_array,
"tech_array": tech_array,
"turbulence_array": turbulence_array,
"if_train": True,
}
env_instance = env(config=env_config)
# read parameters
cwd = kwargs.get("cwd", "./" + str(model_name))
if drl_lib == "elegantrl":
from finrl.agents.elegantrl.models import DRLAgent as DRLAgent_erl
break_step = kwargs.get("break_step", 1e6)
erl_params = kwargs.get("erl_params")
agent = DRLAgent_erl(
env=env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array,
)
model = agent.get_model(model_name, model_kwargs=erl_params)
trained_model = agent.train_model(
model=model, cwd=cwd, total_timesteps=break_step
)
elif drl_lib == "rllib":
total_episodes = kwargs.get("total_episodes", 100)
rllib_params = kwargs.get("rllib_params")
from finrl.agents.rllib.models import DRLAgent as DRLAgent_rllib
agent_rllib = DRLAgent_rllib(
env=env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array,
)
model, model_config = agent_rllib.get_model(model_name)
model_config["lr"] = rllib_params["lr"]
model_config["train_batch_size"] = rllib_params["train_batch_size"]
model_config["gamma"] = rllib_params["gamma"]
# ray.shutdown()
trained_model = agent_rllib.train_model(
model=model,
model_name=model_name,
model_config=model_config,
total_episodes=total_episodes,
)
trained_model.save(cwd)
elif drl_lib == "stable_baselines3":
total_timesteps = kwargs.get("total_timesteps", 1e6)
agent_params = kwargs.get("agent_params")
from finrl.agents.stablebaselines3.models import DRLAgent as DRLAgent_sb3
agent = DRLAgent_sb3(env=env_instance)
model = agent.get_model(model_name, model_kwargs=agent_params)
trained_model = agent.train_model(
model=model, tb_log_name=model_name, total_timesteps=total_timesteps
)
print("Training is finished!")
trained_model.save(cwd)
print("Trained model is saved in " + str(cwd))
else:
raise ValueError("DRL library input is NOT supported. Please check.")
if __name__ == "__main__":
env = StockTradingEnv
# demo for elegantrl
kwargs = {} # in current finrl_meta, with respect yahoofinance, kwargs is {}. For other data sources, such as joinquant, kwargs is not empty
train(
start_date=TRAIN_START_DATE,
end_date=TRAIN_END_DATE,
ticker_list=DOW_30_TICKER,
data_source="yahoofinance",
time_interval="1D",
technical_indicator_list=INDICATORS,
drl_lib="elegantrl",
env=env,
model_name="ppo",
cwd="./test_ppo",
erl_params=ERL_PARAMS,
break_step=1e5,
kwargs=kwargs,
)
## if users want to use rllib, or stable-baselines3, users can remove the following comments
# # demo for rllib
# import ray
# ray.shutdown() # always shutdown previous session if any
# train(
# start_date=TRAIN_START_DATE,
# end_date=TRAIN_END_DATE,
# ticker_list=DOW_30_TICKER,
# data_source="yahoofinance",
# time_interval="1D",
# technical_indicator_list=INDICATORS,
# drl_lib="rllib",
# env=env,
# model_name="ppo",
# cwd="./test_ppo",
# rllib_params=RLlib_PARAMS,
# total_episodes=30,
# )
#
# # demo for stable-baselines3
# train(
# start_date=TRAIN_START_DATE,
# end_date=TRAIN_END_DATE,
# ticker_list=DOW_30_TICKER,
# data_source="yahoofinance",
# time_interval="1D",
# technical_indicator_list=INDICATORS,
# drl_lib="stable_baselines3",
# env=env,
# model_name="sac",
# cwd="./test_sac",
# agent_params=SAC_PARAMS,
# total_timesteps=1e4,
# )