Skip to content

Fast Compiler for C# Expression Trees and the lightweight LightExpression alternative. Diagnostic and code generation tools for the expressions.

License

Notifications You must be signed in to change notification settings

dadhi/FastExpressionCompiler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastExpressionCompiler

logo

Latest Release NotesLicenseBuild Windows,Ubuntu

Targets .NET 6+, .NET 4.7.2+, .NET Standard 2.0+

NuGet packages:

  • FastExpressionCompiler NuGet VersionNuGet Downloads
    • sources package: FastExpressionCompiler.src NuGet VersionNuGet Downloads
    • sources with the public code made internal: FastExpressionCompiler.Internal.src NuGet VersionNuGet Downloads
  • FastExpressionCompiler.LightExpression NuGet VersionNuGet Downloads
    • sources package: FastExpressionCompiler.LightExpression.src NuGet VersionNuGet Downloads
    • sources with the public code made internal: FastExpressionCompiler.LightExpression.Internal.src NuGet VersionNuGet Downloads

The project was originally a part of the DryIoc, so check it out ;-)

The problem

ExpressionTree compilation is used by the wide variety of tools, e.g. IoC/DI containers, Serializers, ORMs and OOMs. But Expression.Compile() is just slow. Moreover the compiled delegate may be slower than the manually created delegate because of the reasons:

TL;DR;

Expression.Compile creates a DynamicMethod and associates it with an anonymous assembly to run it in a sand-boxed environment. This makes it safe for a dynamic method to be emitted and executed by partially trusted code but adds some run-time overhead.

See also a deep dive to Delegate internals.

The solution

The FastExpressionCompiler .CompileFast() extension method is 10-40x times faster than .Compile().
The compiled delegate may be in some cases a lot faster than the one produced by .Compile().

Note: The actual performance may vary depending on the multiple factors: platform, how complex is expression, does it have a closure, does it contain nested lambdas, etc.

In addition, the memory consumption taken by the compilation will be much smaller (check the Allocated column in the benchmarks below).

Benchmarks

Updated to .NET 9.0

BenchmarkDotNet v0.15.0, Windows 11 (10.0.26100.4061/24H2/2024Update/HudsonValley)
Intel Core i9-8950HK CPU 2.90GHz (Coffee Lake), 1 CPU, 12 logical and 6 physical cores
.NET SDK 9.0.203
[Host]     : .NET 9.0.4 (9.0.425.16305), X64 RyuJIT AVX2
DefaultJob : .NET 9.0.4 (9.0.425.16305), X64 RyuJIT AVX2

Hoisted expression with the constructor and two arguments in closure

var a = new A();
var b = new B();
Expression<Func<X>> e = () => new X(a, b);

Compiling expression:

Method Mean Error StdDev Ratio RatioSD Rank Gen0 Gen1 Allocated Alloc Ratio
CompileFast 3.183 us 0.0459 us 0.0407 us 1.00 0.02 1 0.1984 0.1945 1.23 KB 1.00
Compile 147.312 us 1.9291 us 1.8946 us 46.28 0.81 2 0.4883 0.2441 4.48 KB 3.65

Invoking the compiled delegate (comparing to the direct constructor call):

Method Mean Error StdDev Ratio RatioSD Rank Gen0 Allocated Alloc Ratio
DirectConstructorCall 6.055 ns 0.0632 ns 0.0560 ns 1.00 0.01 1 0.0051 32 B 1.00
CompiledLambda 7.853 ns 0.2013 ns 0.1681 ns 1.30 0.03 2 0.0051 32 B 1.00
FastCompiledLambda 7.962 ns 0.2186 ns 0.4052 ns 1.31 0.07 2 0.0051 32 B 1.00

Hoisted expression with the static method and two nested lambdas and two arguments in closure

var a = new A();
var b = new B();
Expression<Func<X>> getXExpr = () => CreateX((aa, bb) => new X(aa, bb), new Lazy<A>(() => a), b);

Compiling expression:

Method Mean Error StdDev Ratio RatioSD Rank Gen0 Gen1 Allocated Alloc Ratio
CompileFast 11.12 us 0.189 us 0.158 us 1.00 0.02 1 0.6104 0.5798 3.77 KB 1.00
Compile 415.09 us 4.277 us 3.571 us 37.34 0.60 2 1.9531 1.4648 12.04 KB 3.19

Invoking compiled delegate comparing to direct method call:

Method Mean Error StdDev Ratio RatioSD Rank Gen0 Allocated Alloc Ratio
DirectMethodCall 40.29 ns 0.549 ns 0.487 ns 1.00 0.02 1 0.0268 168 B 1.00
Invoke_CompiledFast 40.59 ns 0.157 ns 0.123 ns 1.01 0.01 1 0.0166 104 B 0.62
Invoke_Compiled 1,142.12 ns 11.877 ns 14.586 ns 28.35 0.48 2 0.0420 264 B 1.57

Manually composed expression with parameters and closure

var a = new A();
var bParamExpr = Expression.Parameter(typeof(B), "b");
var expr = Expression.Lambda(
    Expression.New(_ctorX,
        Expression.Constant(a, typeof(A)), bParamExpr),
    bParamExpr);

Compiling expression:

Method Mean Error StdDev Ratio RatioSD Rank Gen0 Gen1 Allocated Alloc Ratio
CompileFast_LightExpression 3.107 us 0.0562 us 0.0498 us 0.99 0.02 1 0.1755 0.1678 1.08 KB 1.00
CompileFast_SystemExpression 3.126 us 0.0288 us 0.0256 us 1.00 0.01 1 0.1755 0.1678 1.08 KB 1.00
Compile_SystemExpression 103.948 us 1.9593 us 2.5477 us 33.26 0.84 2 0.7324 0.4883 4.74 KB 4.40

Invoking the compiled delegate compared to the normal delegate and the direct call:

Method Mean Error StdDev Ratio Rank Gen0 Allocated Alloc Ratio
DirectCall 10.19 ns 0.108 ns 0.085 ns 1.00 1 0.0051 32 B 1.00
CompiledFast_LightExpression 10.70 ns 0.089 ns 0.070 ns 1.05 2 0.0051 32 B 1.00
CompiledFast_SystemExpression 10.91 ns 0.071 ns 0.066 ns 1.07 2 0.0051 32 B 1.00
Compiled_SystemExpression 11.59 ns 0.098 ns 0.081 ns 1.14 3 0.0051 32 B 1.00

FastExpressionCompiler.LightExpression.Expression vs System.Linq.Expressions.Expression

FastExpressionCompiler.LightExpression.Expression is the lightweight version of System.Linq.Expressions.Expression. It is designed to be a drop-in replacement for the System Expression - just install the FastExpressionCompiler.LightExpression package instead of FastExpressionCompiler and replace the usings

using System.Linq.Expressions;
using static System.Linq.Expressions.Expression;

with

using static FastExpressionCompiler.LightExpression.Expression;
namespace FastExpressionCompiler.LightExpression.UnitTests

You may look at it as a bare-bone wrapper for the computation operation node which helps you to compose the computation tree (without messing with the IL emit directly). It won't validate operations compatibility for the tree the way System.Linq.Expression does it, and partially why it is so slow. Hopefully you are checking the expression arguments yourself and not waiting for the Expression exceptions to blow-up.

Sample expression

Creating the expression:

Method Mean Error StdDev Median Ratio RatioSD Rank Gen0 Allocated Alloc Ratio
Create_LightExpression 156.6 ns 3.19 ns 8.18 ns 151.9 ns 1.00 0.07 1 0.0827 520 B 1.00
Create_SystemExpression 1,065.0 ns 14.24 ns 11.89 ns 1,069.3 ns 6.82 0.34 2 0.2060 1304 B 2.51

Creating and compiling:

Method Mean Error StdDev Median Ratio RatioSD Rank Gen0 Gen1 Allocated Alloc Ratio
Create_LightExpression_and_CompileFast 4.957 us 0.0986 us 0.2362 us 4.913 us 1.00 0.07 1 0.3510 0.3052 2.15 KB 1.00
Create_SystemExpression_and_CompileFast 6.518 us 0.1889 us 0.5541 us 6.300 us 1.32 0.13 2 0.4578 0.4272 2.97 KB 1.38
Create_SystemExpression_and_Compile 205.000 us 4.0938 us 7.3819 us 206.353 us 41.44 2.45 3 0.9766 0.4883 7.15 KB 3.33

Difference between FastExpressionCompiler and FastExpressionCompiler.LightExpression

FastExpressionCompiler

  • Provides the CompileFast extension methods for the System.Linq.Expressions.LambdaExpression.

FastExpressionCompiler.LightExpression

  • Provides the CompileFast extension methods for FastExpressionCompiler.LightExpression.LambdaExpression.
  • Provides the drop-in expression replacement with the less consumed memory and the faster construction at the cost of the less validation.
  • Includes its own ExpressionVisitor.
  • Supports ToExpression method to convert back to the System.Linq.Expressions.Expression.
  • Supports ToLightExpression conversion method to convert from the System.Linq.Expressions.Expression to FastExpressionCompiler.LightExpression.Expression.

Both FastExpressionCompiler and FastExpressionCompiler.LightExpression

  • Support ToCSharpString() method to output the compilable C# code represented by the expression.
  • Support ToExpressionString() method to output the expression construction C# code, so given the expression object you'll get e.g. Expression.Lambda(Expression.New(...)).

Who's using it

Marten, Rebus, StructureMap, Lamar, ExpressionToCodeLib, NServiceBus, LINQ2DB, MapsterMapper

Considering: Moq, Apex.Serialization

How to use

Install from the NuGet and add the using FastExpressionCompiler; and replace the call to the .Compile() with the .CompileFast() extension method.

Note: CompileFast has an optional parameter bool ifFastFailedReturnNull = false to disable fallback to Compile.

Examples

Hoisted lambda expression (created by the C# Compiler):

var a = new A(); var b = new B();
Expression<Func<X>> expr = () => new X(a, b);

var getX = expr.CompileFast();
var x = getX();

Manually composed lambda expression:

var a = new A();
var bParamExpr = Expression.Parameter(typeof(B), "b");
var expr = Expression.Lambda(
    Expression.New(_ctorX,
        Expression.Constant(a, typeof(A)), bParamExpr),
    bParamExpr);

var f = expr.CompileFast();
var x = f(new B());

Note: You may simplify Expression usage and enable faster refactoring with the C# using static statement:

using static System.Linq.Expressions.Expression;
// or
// using static FastExpressionCompiler.LightExpression.Expression;

var a = new A();
var bParamExpr = Parameter(typeof(B), "b");
var expr = Lambda(
    New(_ctorX, Constant(a, typeof(A)), bParamExpr),
    bParamExpr);

var f = expr.CompileFast();
var x = f(new B());

How it works

The idea is to provide the fast compilation for the supported expression types and fallback to the system Expression.Compile() for the not supported types:

What's not supported yet

FEC does not support yet:

  • Quote
  • Dynamic
  • RuntimeVariables
  • DebugInfo
  • MemberInit with the MemberMemberBinding and the ListMemberBinding binding types
  • NewArrayInit multi-dimensional array initializer is not supported yet

To find what nodes are not supported in your expression you may use the technic described below in the Diagnostics section.

The compilation is done by traversing the expression nodes and emitting the IL. The code is tuned for the performance and the minimal memory consumption.

The expression is traversed twice:

  • 1st round is to collect the constants and nested lambdas into the closure objects.
  • 2nd round is to emit the IL code and create the delegate using the DynamicMethod.

If visitor finds the not supported expression node or the error condition, the compilation is aborted, and null is returned enabling the fallback to System .Compile().

Diagnostics and Code Generation

FEC V3 has added powerful diagnostics and code generation tools.

Diagnostics

You may pass the optional CompilerFlags.EnableDelegateDebugInfo into the CompileFast methods.

EnableDelegateDebugInfo adds the diagnostic info into the compiled delegate including its source Expression and compiled IL code.

It can be used as following:

System.Linq.Expressions.Expression<Func<int, Func<int>>> e = 
  n => () => n + 1;
var f = e.CompileFast(flags: CompilerFlags.EnableDelegateDebugInfo);
var d = f.TryGetDebugInfo();
d.PrintExpression();
d.PrintCSharp();
d.PrintIL(); // available in NET8+
Expand to see the output of the above code...

Output of d.PrintExpression() is the valid C#:

var p = new ParameterExpression[1]; // the parameter expressions
var e = new Expression[3]; // the unique expressions
var expr = Lambda<Func<int, Func<int>>>(
  e[0]=Lambda<Func<int>>(
      e[1]=MakeBinary(ExpressionType.Add,
          p[0]=Parameter(typeof(int), "n"),
          e[2]=Constant(1)), new ParameterExpression[0]),
  p[0 // (int n)
      ]);

Output of d.PrintCSharp() is the valid C#:

var @cs = (Func<int, Func<int>>)((int n) => //Func<int>
    (Func<int>)(() => //int
        n + 1));

Output of d.PrintIL() (includes the IL of the nested lambda):

<Caller>
0   ldarg.0
1   ldfld object[] ExpressionCompiler.ArrayClosure.ConstantsAndNestedLambdas
6   stloc.0
7   ldloc.0
8   ldc.i4.0
9   ldelem.ref
10  stloc.1
11  ldloc.1
12  ldc.i4.1
13  newarr object
18  stloc.2
19  ldloc.2
20  stfld object[] ExpressionCompiler.NestedLambdaForNonPassedParams.NonPassedParams
25  ldloc.2
26  ldc.i4.0
27  ldarg.1
28  box int
33  stelem.ref
34  ldloc.1
35  ldfld object ExpressionCompiler.NestedLambdaForNonPassedParams.NestedLambda
40  ldloc.2
41  ldloc.1
42  ldfld object[] ExpressionCompiler.NestedLambdaForNonPassedParamsWithConstants.ConstantsAndNestedLambdas
47  newobj ExpressionCompiler.ArrayClosureWithNonPassedParams(System.Object[], System.Object[])
52  call Func<int> ExpressionCompiler.CurryClosureFuncs.Curry(System.Func`2[FastExpressionCompiler.LightExpression.ExpressionCompiler+ArrayClosure,System.Int32], ArrayClosure)
57  ret
</Caller>
<0_nested_in_Caller>
0   ldarg.0
1   ldfld object[] ExpressionCompiler.ArrayClosureWithNonPassedParams.NonPassedParams
6   ldc.i4.0
7   ldelem.ref
8   unbox.any int
13  ldc.i4.1
14  add
15  ret
</0_nested_in_Caller>

ThrowOnNotSupportedExpression and NotSupported_ flags

FEC V3.1 has added the compiler flag CompilerFlags.ThrowOnNotSupportedExpression. When passed to CompileFast(flags: CompilerFlags.ThrowOnNotSupportedExpression) and the expression contains not (yet) supported Expression node the compilation will throw the exception instead of returning null.

To get the whole list of the not yet supported cases you may check in Result.NotSupported_ enum values.

Code Generation

The Code Generation capabilities are available via the ToCSharpString and ToExpressionString extension methods.

Note: When converting the source expression to either C# code or to the Expression construction code you may find the // NOT_SUPPORTED_EXPRESSION comments marking the not supported yet expressions by FEC. So you may test the presence or absence of this comment.

Additional optimizations

  1. Using FastExpressionCompiler.LightExpression.Expression instead of System.Linq.Expressions.Expression for the faster expression creation.
  2. Using .TryCompileWithPreCreatedClosure and .TryCompileWithoutClosure methods when you know the expression at hand and may skip the first traversing round, e.g. for the "static" expression which does not contain the bound constants. Note: You cannot skip the 1st round if the expression contains the Block, Try, or Goto expressions.

Bitten Ice Pop icon icon by Icons8

About

Fast Compiler for C# Expression Trees and the lightweight LightExpression alternative. Diagnostic and code generation tools for the expressions.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 24

Languages