Skip to content

Commit 70a62d8

Browse files
author
Jamell Dacon
authored
Update README.md
1 parent e6d846a commit 70a62d8

File tree

1 file changed

+98
-1
lines changed

1 file changed

+98
-1
lines changed

README.md

+98-1
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,104 @@ The following datasets are very popular in **Recommender Systems**, below are al
138138
139139
> - Content: Part of the data has been first collected using the Kaggle API to retrieve the full list datasets, then each URL reference has been leveraged with a Python script in order to retrieve more detailed information.
140140
141-
141+
142+
143+
# A collection of resources for Recommender Systems (RecSys)
144+
145+
## Recommendation Algorithms
146+
147+
- Recommender Systems Basics
148+
- [Wikipedia](https://en.wikipedia.org/wiki/Recommender_system)
149+
- Nearest Neighbor Search
150+
- [Wikipedia](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)
151+
- [sklearn.neighbors](http://scikit-learn.org/stable/modules/neighbors.html)
152+
- [Benchmarks of approximate nearest neighbor libraries](https://github.com/erikbern/ann-benchmarks)
153+
- Classic Matrix Facotirzation
154+
- [Matrix Factorization: A Simple Tutorial and Implementation in Python](http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/)
155+
- [Matrix Factorization Techiques for Recommendaion Systems](https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf)
156+
- Singular Value Decomposition (SVD)
157+
- [Wikipedia](https://en.wikipedia.org/wiki/Singular-value_decomposition)
158+
- SVD++
159+
- [Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model](http://www.cs.rochester.edu/twiki/pub/Main/HarpSeminar/Factorization_Meets_the_Neighborhood-_a_Multifaceted_Collaborative_Filtering_Model.pdf)
160+
- Content-based CF / Context-aware CF
161+
- there are so many ...
162+
- Advanced Matrix Factorization
163+
- [Probabilistic Matrix Factorization](https://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf)
164+
- [Fast Matrix Factorization for Online Recommendation with Implicit Feedback](https://dl.acm.org/citation.cfm?id=2911489)
165+
- [Collaborative Filtering for Implicit Feedback Datasets](http://ieeexplore.ieee.org/document/4781121/)
166+
- [Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence](https://dl.acm.org/citation.cfm?id=2959182)
167+
- Factorization Machine
168+
- [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
169+
- [Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/citation.cfm?id=2959134)
170+
- Sparse LInear Method (SLIM)
171+
- [SLIM: Sparse Linear Methods for Top-N Recommender Systems](http://glaros.dtc.umn.edu/gkhome/node/774)
172+
- [Global and Local SLIM](http://glaros.dtc.umn.edu/gkhome/node/1192)
173+
- Learning to Rank
174+
- [Wikipedia](https://en.wikipedia.org/wiki/Learning_to_rank)
175+
- [BPR: Bayesian personalized ranking from implicit feedback](https://dl.acm.org/citation.cfm?id=1795167)
176+
- [WSABIE: Scaling Up To Large Vocabulary Image Annotation](http://www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf)
177+
- [Top-1 Feedback](http://proceedings.mlr.press/v38/chaudhuri15.pdf)
178+
- [k-order statistic loss](http://www.ee.columbia.edu/~ronw/pubs/recsys2013-kaos.pdf)
179+
- [VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback](https://dl.acm.org/citation.cfm?id=3015834)
180+
- [The LambdaLoss Framework for Ranking Metric Optimization](https://dl.acm.org/citation.cfm?id=3271784)
181+
- Cold-start
182+
- [Deep content-based music recommendation](https://papers.nips.cc/paper/5004-deep-content-based-music-recommendation)
183+
- [DropoutNet: Addressing Cold Start in Recommender Systems](https://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-recommender-systems)
184+
- Network Embedding
185+
- [awesome-network-embedding](https://github.com/chihming/awesome-network-embedding)
186+
- [Item2vec](https://arxiv.org/abs/1603.04259)
187+
- [entity2rec](https://dl.acm.org/citation.cfm?id=3109889)
188+
- Sequential-based
189+
- [Factorizing Personalized Markov Chains for Next-Basket Recommendation](https://dl.acm.org/citation.cfm?id=1772773)
190+
- [Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939)
191+
- Translation Embedding
192+
- [Translation-based Recommendation](https://dl.acm.org/citation.cfm?id=3109882)
193+
- [Translation-based Factorization Machines for Sequential Recommendation](https://dl.acm.org/citation.cfm?id=3240356)
194+
- Graph-Convolution-based
195+
- [GraphSAGE: Inductive Representation Learning on Large Graphs](https://dl.acm.org/doi/10.5555/3294771.3294869)
196+
- [PinSage: Graph Convolutional Neural Networks for Web-Scale Recommender Systems](https://arxiv.org/abs/1806.01973)
197+
- Knowledge-Graph-based
198+
- [Collaborative knowledge base embedding for recommender systems](https://dl.acm.org/doi/10.1145/2939672.2939673)
199+
- [Knowledge Graph Convolutional Networks for Recommender Systems](https://dl.acm.org/citation.cfm?id=3313417)
200+
- [KGAT: Knowledge Graph Attention Network for Recommendation](https://dl.acm.org/authorize.cfm?key=N688414)
201+
- [Ripplenet: Propagating user preferences on the knowledge graph for recommender systems](https://dl.acm.org/doi/10.1145/3269206.3271739)
202+
- Deep Learning
203+
- [Deep Neural Networks for YouTube Recommendations](https://ai.google/research/pubs/pub45530)
204+
- [Deep Learning based Recommender System: A Survey and New Perspectives](https://arxiv.org/abs/1707.07435)
205+
- [Neural Collaborative Filtering](https://dl.acm.org/citation.cfm?id=3052569)
206+
- [Collaborative Deep Learning for Recommender Systems](http://www.wanghao.in/CDL.htm)
207+
- [Collaborative Denoising Auto-Encoders for Top-N Recommender Systems](https://dl.acm.org/citation.cfm?id=2835837)
208+
- [Collaborative recurrent autoencoder: recommend while learning to fill in the blanks](https://dl.acm.org/citation.cfm?id=3157143)
209+
- [TensorFlow Wide & Deep Learning](https://www.tensorflow.org/tutorials/wide_and_deep)
210+
- [Deep Neural Networks for YouTube Recommendations](https://research.google.com/pubs/pub45530.html)
211+
- [Collaborative Memory Network for Recommendation Systems](https://arxiv.org/abs/1804.10862)
212+
- [Variational Autoencoders for Collaborative Filtering](https://dl.acm.org/citation.cfm?id=3186150)
213+
214+
## Online Courses
215+
- [Recommender Systems Specialization](https://zh-tw.coursera.org/specializations/recommender-systems), University of Minnesota
216+
- [Introduction to Recommender Systems: Non-Personalized and Content-Based](https://zh-tw.coursera.org/learn/recommender-systems-introduction), University of Minnesota
217+
218+
## RecSys-related Competitions
219+
- [Kaggle](https://www.kaggle.com/) - product recommendations, hotel recommendations, job recommendations, etc.
220+
- ACM RecSys Challenge
221+
- [WSDM Cup 2018](https://wsdm-cup-2018.kkbox.events/)
222+
- [Million Song Dataset Challenge](https://www.kaggle.com/c/msdchallenge)
223+
- [Netflix Prize](https://www.netflixprize.com/)
224+
225+
## Tutorials
226+
- RecSys tutorials
227+
- [2014](https://recsys.acm.org/recsys14/tutorials/)
228+
- [2015](https://recsys.acm.org/recsys15/tutorials/)
229+
- [2016](https://recsys.acm.org/recsys16/tutorials/)
230+
- [2017](https://recsys.acm.org/recsys17/tutorials/)
231+
- [2018](https://recsys.acm.org/recsys18/tutorials/)
232+
- [Kdd 2014 Tutorial - the recommender problem revisited](https://www.slideshare.net/xamat/kdd-2014-tutorial-the-recommender-problem-revisited)
233+
234+
## Articles
235+
- [Matrix Factorization: A Simple Tutorial and Implementation in Python](http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/)
236+
237+
## Conferences
238+
- [RecSys – ACM Recommender Systems](https://recsys.acm.org/)
142239

143240

144241

0 commit comments

Comments
 (0)