-
Notifications
You must be signed in to change notification settings - Fork 26
/
nest.py
685 lines (554 loc) · 26.3 KB
/
nest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# -*- coding: utf-8 -*-
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""## Functions for working with arbitrarily nested sequences of elements.
This module can perform operations on nested structures. A nested structure is a
Python sequence, tuple (including `namedtuple`), or dict that can contain
further sequences, tuples, and dicts.
The utilities here assume (and do not check) that the nested structures form a
'tree', i.e., no references in the structure of the input of these functions
should be recursive.
Example structures: `((3, 4), 5, (6, 7, (9, 10), 8))`, `(np.array(0),
(np.array([3, 4]), tf.constant([3, 4])))`
"""
import collections as _collections
import six as _six
def _sorted(dict_):
"""Returns a sorted list of the dict keys, with error if keys not sortable."""
try:
return sorted(_six.iterkeys(dict_))
except TypeError:
raise TypeError("nest only supports dicts with sortable keys.")
def _sequence_like(instance, args):
"""Converts the sequence `args` to the same type as `instance`.
Args:
instance: an instance of `tuple`, `list`, `namedtuple`, `dict`, or
`collections.OrderedDict`.
args: elements to be converted to the `instance` type.
Returns:
`args` with the type of `instance`.
"""
if isinstance(instance, dict):
# Pack dictionaries in a deterministic order by sorting the keys.
# Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
result = dict(zip(_sorted(instance), args))
return type(instance)((key, result[key]) for key in _six.iterkeys(instance))
elif (isinstance(instance, tuple) and
hasattr(instance, "_fields") and
isinstance(instance._fields, _collections.Sequence) and
all(isinstance(f, _six.string_types) for f in instance._fields)):
# This is a namedtuple
return type(instance)(*args)
else:
# Not a namedtuple
return type(instance)(args)
def _yield_value(iterable):
if isinstance(iterable, dict):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for key in _sorted(iterable):
yield iterable[key]
else:
for value in iterable:
yield value
def _yield_flat_nest(nest):
for n in _yield_value(nest):
if is_sequence(n):
for ni in _yield_flat_nest(n):
yield ni
else:
yield n
# Used by `_warn_once` to remember which warning messages have been given.
_ALREADY_WARNED = {}
def _warn_once(message):
"""Logs a warning message, once per unique string."""
if message not in _ALREADY_WARNED:
_ALREADY_WARNED[message] = True
def is_sequence(seq):
"""Returns a true if its input is a collections.Sequence (except strings).
Args:
seq: an input sequence.
Returns:
True if the sequence is a not a string and is a collections.Sequence or a
dict.
"""
if isinstance(seq, dict):
return True
if isinstance(seq, set):
_warn_once("Sets are not currently considered sequences, but this may "
"change in the future, so consider avoiding using them.")
return (isinstance(seq, _collections.Sequence)
and not isinstance(seq, _six.string_types))
def flatten(nest):
"""Returns a flat list from a given nested structure.
If `nest` is not a sequence, tuple, or dict, then returns a single-element
list: `[nest]`.
In the case of dict instances, the sequence consists of the values, sorted by
key to ensure deterministic behavior. This is true also for `OrderedDict`
instances: their sequence order is ignored, the sorting order of keys is
used instead. The same convention is followed in `pack_sequence_as`. This
correctly repacks dicts and `OrderedDict`s after they have been flattened,
and also allows flattening an `OrderedDict` and then repacking it back using
a correponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be flattened.
Args:
nest: an arbitrarily nested structure or a scalar object. Note, numpy
arrays are considered scalars.
Returns:
A Python list, the flattened version of the input.
Raises:
TypeError: The nest is or contains a dict with non-sortable keys.
"""
if is_sequence(nest):
return list(_yield_flat_nest(nest))
else:
return [nest]
def _recursive_assert_same_structure(nest1, nest2, check_types):
"""Helper function for `assert_same_structure`."""
is_sequence_nest1 = is_sequence(nest1)
if is_sequence_nest1 != is_sequence(nest2):
raise ValueError(
"The two structures don't have the same nested structure.\n\n"
"First structure: %s\n\nSecond structure: %s." % (nest1, nest2))
if not is_sequence_nest1:
return # finished checking
if check_types:
type_nest1 = type(nest1)
type_nest2 = type(nest2)
if type_nest1 != type_nest2:
raise TypeError(
"The two structures don't have the same sequence type. First "
"structure has type %s, while second structure has type %s."
% (type_nest1, type_nest2))
if isinstance(nest1, dict):
keys1 = set(_six.iterkeys(nest1))
keys2 = set(_six.iterkeys(nest2))
if keys1 != keys2:
raise ValueError(
"The two dictionaries don't have the same set of keys. First "
"structure has keys {}, while second structure has keys {}."
.format(keys1, keys2))
nest1_as_sequence = [n for n in _yield_value(nest1)]
nest2_as_sequence = [n for n in _yield_value(nest2)]
for n1, n2 in zip(nest1_as_sequence, nest2_as_sequence):
_recursive_assert_same_structure(n1, n2, check_types)
def assert_same_structure(nest1, nest2, check_types=True):
"""Asserts that two structures are nested in the same way.
Args:
nest1: an arbitrarily nested structure.
nest2: an arbitrarily nested structure.
check_types: if `True` (default) types of sequences are checked as
well, including the keys of dictionaries. If set to `False`, for example
a list and a tuple of objects will look the same if they have the same
size.
Raises:
ValueError: If the two structures do not have the same number of elements or
if the two structures are not nested in the same way.
TypeError: If the two structures differ in the type of sequence in any of
their substructures. Only possible if `check_types` is `True`.
"""
len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1
len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1
if len_nest1 != len_nest2:
raise ValueError("The two structures don't have the same number of "
"elements.\n\nFirst structure (%i elements): %s\n\n"
"Second structure (%i elements): %s"
% (len_nest1, nest1, len_nest2, nest2))
_recursive_assert_same_structure(nest1, nest2, check_types)
def flatten_dict_items(dictionary):
"""Returns a dictionary with flattened keys and values.
This function flattens the keys and values of a dictionary, which can be
arbitrarily nested structures, and returns the flattened version of such
structures:
```python
example_dictionary = {(4, 5, (6, 8)): ("a", "b", ("c", "d"))}
result = {4: "a", 5: "b", 6: "c", 8: "d"}
flatten_dict_items(example_dictionary) == result
```
The input dictionary must satisfy two properties:
1. Its keys and values should have the same exact nested structure.
2. The set of all flattened keys of the dictionary must not contain repeated
keys.
Args:
dictionary: the dictionary to zip
Returns:
The zipped dictionary.
Raises:
TypeError: If the input is not a dictionary.
ValueError: If any key and value have not the same structure, or if keys are
not unique.
"""
if not isinstance(dictionary, dict):
raise TypeError("input must be a dictionary")
flat_dictionary = {}
for i, v in _six.iteritems(dictionary):
if not is_sequence(i):
if i in flat_dictionary:
raise ValueError(
"Could not flatten dictionary: key %s is not unique." % i)
flat_dictionary[i] = v
else:
flat_i = flatten(i)
flat_v = flatten(v)
if len(flat_i) != len(flat_v):
raise ValueError(
"Could not flatten dictionary. Key had %d elements, but value had "
"%d elements. Key: %s, value: %s."
% (len(flat_i), len(flat_v), flat_i, flat_v))
for new_i, new_v in zip(flat_i, flat_v):
if new_i in flat_dictionary:
raise ValueError(
"Could not flatten dictionary: key %s is not unique."
% (new_i))
flat_dictionary[new_i] = new_v
return flat_dictionary
def _packed_nest_with_indices(structure, flat, index):
"""Helper function for pack_sequence_as.
Args:
structure: Substructure (list / tuple / dict) to mimic.
flat: Flattened values to output substructure for.
index: Index at which to start reading from flat.
Returns:
The tuple (new_index, child), where:
* new_index - the updated index into `flat` having processed `structure`.
* packed - the subset of `flat` corresponding to `structure`,
having started at `index`, and packed into the same nested
format.
Raises:
ValueError: if `structure` contains more elements than `flat`
(assuming indexing starts from `index`).
"""
packed = []
for s in _yield_value(structure):
if is_sequence(s):
new_index, child = _packed_nest_with_indices(s, flat, index)
packed.append(_sequence_like(s, child))
index = new_index
else:
packed.append(flat[index])
index += 1
return index, packed
def pack_sequence_as(structure, flat_sequence):
"""Returns a given flattened sequence packed into a given structure.
If `structure` is a scalar, `flat_sequence` must be a single-element list;
in this case the return value is `flat_sequence[0]`.
If `structure` is or contains a dict instance, the keys will be sorted to
pack the flat sequence in deterministic order. This is true also for
`OrderedDict` instances: their sequence order is ignored, the sorting order of
keys is used instead. The same convention is followed in `pack_sequence_as`.
This correctly repacks dicts and `OrderedDict`s after they have been
flattened, and also allows flattening an `OrderedDict` and then repacking it
back using a correponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be flattened.
Args:
structure: Nested structure, whose structure is given by nested lists,
tuples, and dicts. Note: numpy arrays and strings are considered
scalars.
flat_sequence: flat sequence to pack.
Returns:
packed: `flat_sequence` converted to have the same recursive structure as
`structure`.
Raises:
ValueError: If `flat_sequence` and `structure` have different
element counts.
TypeError: `structure` is or contains a dict with non-sortable keys.
"""
if not is_sequence(flat_sequence):
raise TypeError("flat_sequence must be a sequence")
if not is_sequence(structure):
if len(flat_sequence) != 1:
raise ValueError("Structure is a scalar but len(flat_sequence) == %d > 1"
% len(flat_sequence))
return flat_sequence[0]
flat_structure = flatten(structure)
if len(flat_structure) != len(flat_sequence):
raise ValueError(
"Could not pack sequence. Structure had %d elements, but flat_sequence "
"had %d elements. Structure: %s, flat_sequence: %s."
% (len(flat_structure), len(flat_sequence), structure, flat_sequence))
_, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
return _sequence_like(structure, packed)
def map_structure(func, *structure, **check_types_dict):
"""Applies `func` to each entry in `structure` and returns a new structure.
Applies `func(x[0], x[1], ...)` where x[i] is an entry in
`structure[i]`. All structures in `structure` must have the same arity,
and the return value will contain the results in the same structure.
Args:
func: A callable that accepts as many arguments as there are structures.
*structure: scalar, or tuple or list of constructed scalars and/or other
tuples/lists, or scalars. Note: numpy arrays are considered as scalars.
**check_types_dict: only valid keyword argument is `check_types`. If set to
`True` (default) the types of iterables within the structures have to be
same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError`
exception). To allow this set this argument to `False`.
Returns:
A new structure with the same arity as `structure`, whose values correspond
to `func(x[0], x[1], ...)` where `x[i]` is a value in the corresponding
location in `structure[i]`. If there are different sequence types and
`check_types` is `False` the sequence types of the first structure will be
used.
Raises:
TypeError: If `func` is not callable or if the structures do not match
each other by depth tree.
ValueError: If no structure is provided or if the structures do not match
each other by type.
ValueError: If wrong keyword arguments are provided.
"""
if not callable(func):
raise TypeError("func must be callable, got: %s" % func)
if not structure:
raise ValueError("Must provide at least one structure")
if check_types_dict:
if "check_types" not in check_types_dict or len(check_types_dict) > 1:
raise ValueError("Only valid keyword argument is check_types")
check_types = check_types_dict["check_types"]
else:
check_types = True
for other in structure[1:]:
assert_same_structure(structure[0], other, check_types=check_types)
flat_structure = [flatten(s) for s in structure]
entries = zip(*flat_structure)
return pack_sequence_as(
structure[0], [func(*x) for x in entries])
def _yield_flat_up_to(shallow_tree, input_tree):
"""Yields elements `input_tree` partially flattened up to `shallow_tree`."""
if is_sequence(shallow_tree):
for shallow_branch, input_branch in zip(_yield_value(shallow_tree),
_yield_value(input_tree)):
for input_leaf in _yield_flat_up_to(shallow_branch, input_branch):
yield input_leaf
else:
yield input_tree
def assert_shallow_structure(shallow_tree, input_tree, check_types=True):
"""Asserts that `shallow_tree` is a shallow structure of `input_tree`.
That is, this function tests if the `input_tree` structure can be created from
the `shallow_tree` structure by replacing its leaf nodes with deeper
tree structures.
Examples:
The following code will raise an exception:
```python
shallow_tree = ["a", "b"]
input_tree = ["c", ["d", "e"], "f"]
assert_shallow_structure(shallow_tree, input_tree)
```
The following code will not raise an exception:
```python
shallow_tree = ["a", "b"]
input_tree = ["c", ["d", "e"]]
assert_shallow_structure(shallow_tree, input_tree)
```
Args:
shallow_tree: an arbitrarily nested structure.
input_tree: an arbitrarily nested structure.
check_types: if `True` (default) the sequence types of `shallow_tree` and
`input_tree` have to be the same.
Raises:
TypeError: If `shallow_tree` is a sequence but `input_tree` is not.
TypeError: If the sequence types of `shallow_tree` are different from
`input_tree`. Only raised if `check_types` is `True`.
ValueError: If the sequence lengths of `shallow_tree` are different from
`input_tree`.
"""
if is_sequence(shallow_tree):
if not is_sequence(input_tree):
raise TypeError(
"If shallow structure is a sequence, input must also be a sequence. "
"Input has type: %s." % type(input_tree))
if check_types and not isinstance(input_tree, type(shallow_tree)):
raise TypeError(
"The two structures don't have the same sequence type. Input "
"structure has type %s, while shallow structure has type %s."
% (type(input_tree), type(shallow_tree)))
if len(input_tree) != len(shallow_tree):
raise ValueError(
"The two structures don't have the same sequence length. Input "
"structure has length %s, while shallow structure has length %s."
% (len(input_tree), len(shallow_tree)))
for shallow_branch, input_branch in zip(shallow_tree, input_tree):
assert_shallow_structure(shallow_branch, input_branch,
check_types=check_types)
def flatten_up_to(shallow_tree, input_tree):
"""Flattens `input_tree` up to `shallow_tree`.
Any further depth in structure in `input_tree` is retained as elements in the
partially flatten output.
If `shallow_tree` and `input_tree` are not sequences, this returns a
single-element list: `[input_tree]`.
Use Case:
Sometimes we may wish to partially flatten a nested sequence, retaining some
of the nested structure. We achieve this by specifying a shallow structure,
`shallow_tree`, we wish to flatten up to.
The input, `input_tree`, can be thought of as having the same structure as
`shallow_tree`, but with leaf nodes that are themselves tree structures.
Examples:
```python
input_tree = [[[2, 2], [3, 3]], [[4, 9], [5, 5]]]
shallow_tree = [[True, True], [False, True]]
flattened_input_tree = flatten_up_to(shallow_tree, input_tree)
flattened_shallow_tree = flatten_up_to(shallow_tree, shallow_tree)
# Output is:
# [[2, 2], [3, 3], [4, 9], [5, 5]]
# [True, True, False, True]
```
```python
input_tree = [[('a', 1), [('b', 2), [('c', 3), [('d', 4)]]]]]
shallow_tree = [['level_1', ['level_2', ['level_3', ['level_4']]]]]
input_tree_flattened_as_shallow_tree = flatten_up_to(shallow_tree, input_tree)
input_tree_flattened = flatten(input_tree)
# Output is:
# [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
# ['a', 1, 'b', 2, 'c', 3, 'd', 4]
```
Non-Sequence Edge Cases:
```python
flatten_up_to(0, 0) # Output: [0]
flatten_up_to(0, [0, 1, 2]) # Output: [[0, 1, 2]]
flatten_up_to([0, 1, 2], 0) # Output: TypeError
flatten_up_to([0, 1, 2], [0, 1, 2]) # Output: [0, 1, 2]
```
Args:
shallow_tree: a possibly pruned structure of input_tree.
input_tree: an arbitrarily nested structure or a scalar object.
Note, numpy arrays are considered scalars.
Returns:
A Python list, the partially flattened version of `input_tree` according to
the structure of `shallow_tree`.
Raises:
TypeError: If `shallow_tree` is a sequence but `input_tree` is not.
TypeError: If the sequence types of `shallow_tree` are different from
`input_tree`.
ValueError: If the sequence lengths of `shallow_tree` are different from
`input_tree`.
"""
assert_shallow_structure(shallow_tree, input_tree)
return list(_yield_flat_up_to(shallow_tree, input_tree))
def map_structure_up_to(shallow_tree, func, *inputs):
"""Applies a function or op to a number of partially flattened inputs.
The `inputs` are flattened up to `shallow_tree` before being mapped.
Use Case:
Sometimes we wish to apply a function to a partially flattened
sequence (for example when the function itself takes sequence inputs). We
achieve this by specifying a shallow structure, `shallow_tree` we wish to
flatten up to.
The `inputs`, can be thought of as having the same structure as
`shallow_tree`, but with leaf nodes that are themselves tree structures.
This function therefore will return something with the same base structure as
`shallow_tree`.
Examples:
```python
ab_tuple = collections.namedtuple("ab_tuple", "a, b")
op_tuple = collections.namedtuple("op_tuple", "add, mul")
inp_val = ab_tuple(a=2, b=3)
inp_ops = ab_tuple(a=op_tuple(add=1, mul=2), b=op_tuple(add=2, mul=3))
out = map_structure_up_to(inp_val, lambda val, ops: (val + ops.add) * ops.mul,
inp_val, inp_ops)
# Output is: ab_tuple(a=6, b=15)
```
```python
data_list = [[2, 4, 6, 8], [[1, 3, 5, 7, 9], [3, 5, 7]]]
name_list = ['evens', ['odds', 'primes']]
out = map_structure_up_to(
name_list,
lambda name, sec: "first_{}_{}".format(len(sec), name),
name_list, data_list)
# Output is: ['first_4_evens', ['first_5_odds', 'first_3_primes']]
```
Args:
shallow_tree: a shallow tree, common to all the inputs.
func: callable which will be applied to each input individually.
*inputs: arbitrarily nested combination of objects that are compatible with
shallow_tree. The function `func` is applied to corresponding
partially flattened elements of each input, so the function must support
arity of `len(inputs)`.
Raises:
TypeError: If `shallow_tree` is a sequence but `input_tree` is not.
TypeError: If the sequence types of `shallow_tree` are different from
`input_tree`.
ValueError: If the sequence lengths of `shallow_tree` are different from
`input_tree`.
Returns:
result of repeatedly applying `func`, with same structure as
`shallow_tree`.
"""
if not inputs:
raise ValueError("Cannot map over no sequences")
for input_tree in inputs:
assert_shallow_structure(shallow_tree, input_tree)
# Flatten each input separately, apply the function to corresponding elements,
# then repack based on the structure of the first input.
all_flattened_up_to = [flatten_up_to(shallow_tree, input_tree)
for input_tree in inputs]
results = [func(*tensors) for tensors in zip(*all_flattened_up_to)]
return pack_sequence_as(structure=shallow_tree, flat_sequence=results)
def get_traverse_shallow_structure(traverse_fn, structure):
"""Generates a shallow structure from a `traverse_fn` and `structure`.
`traverse_fn` must accept any possible subtree of `structure` and return
a depth=1 structure containing `True` or `False` values, describing which
of the top-level subtrees may be traversed. It may also
return scalar `True` or `False` "traversal is OK / not OK for all subtrees."
Examples are available in the unit tests (nest_test.py).
Args:
traverse_fn: Function taking a substructure and returning either a scalar
`bool` (whether to traverse that substructure or not) or a depth=1
shallow structure of the same type, describing which parts of the
substructure to traverse.
structure: The structure to traverse.
Returns:
A shallow structure containing python bools, which can be passed to
`map_structure_up_to` and `flatten_up_to`.
Raises:
TypeError: if `traverse_fn` returns a sequence for a non-sequence input,
or a structure with depth higher than 1 for a sequence input,
or if any leaf values in the returned structure or scalar are not type
`bool`.
"""
to_traverse = traverse_fn(structure)
if not is_sequence(structure):
if not isinstance(to_traverse, bool):
raise TypeError("traverse_fn returned structure: %s for non-structure: %s"
% (to_traverse, structure))
return to_traverse
level_traverse = []
if isinstance(to_traverse, bool):
if not to_traverse:
# Do not traverse this substructure at all. Exit early.
return False
else:
# Traverse the entire substructure.
for branch in _yield_value(structure):
level_traverse.append(
get_traverse_shallow_structure(traverse_fn, branch))
elif not is_sequence(to_traverse):
raise TypeError("traverse_fn returned a non-bool scalar: %s for input: %s"
% (to_traverse, structure))
else:
# Traverse some subset of this substructure.
assert_shallow_structure(to_traverse, structure)
for t, branch in zip(_yield_value(to_traverse), _yield_value(structure)):
if not isinstance(t, bool):
raise TypeError(
"traverse_fn didn't return a depth=1 structure of bools. saw: %s "
" for structure: %s" % (to_traverse, structure))
if t:
level_traverse.append(
get_traverse_shallow_structure(traverse_fn, branch))
else:
level_traverse.append(False)
return _sequence_like(structure, level_traverse)