-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathcapsule_masked.py
123 lines (103 loc) · 4.83 KB
/
capsule_masked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from tensorflow.python.layers import base as base_layer
from TfUtils import mkMask
_EPSILON = 1e-9
_MIN_NUM = -np.Inf
class Capsule(base_layer.Layer):
def __init__(self, out_caps_num, out_caps_dim, iter_num=3, wrr_dim=(1, 1), reuse=None):
super(Capsule, self).__init__(_reuse=reuse)
self.out_caps_num = out_caps_num
self.out_caps_dim = out_caps_dim
self.iter_num = iter_num
self.w_rr = tf.get_variable(name='w_rr', shape=(1, 1, wrr_dim[0], wrr_dim[1]))
def call(self, in_caps, seqLen, caps_ihat=None, re_routing=False):
caps_uhat = shared_routing_uhat(in_caps, self.out_caps_num, self.out_caps_dim, scope='rnn_caps_uhat')
if not re_routing:
V, S, C, B = masked_routing_iter(caps_uhat, seqLen, self.iter_num, caps_ihat, w_rr=None)
else:
V, S, C, B = masked_routing_iter(caps_uhat, seqLen, self.iter_num, caps_ihat, w_rr=self.w_rr)
return V, C, B
def shared_routing_uhat(caps, out_caps_num, out_caps_dim, scope=None):
'''
Args:
caps: # shape(b_sz, caps_num, caps_dim)
out_caps_num: #number of output capsule
out_caps_dim: #dimension of output capsule
Returns:
caps_uhat: shape(b_sz, caps_num, out_caps_num, out_caps_dim)
'''
b_sz = tf.shape(caps)[0]
tstp = tf.shape(caps)[1]
with tf.variable_scope(scope or 'shared_routing_uhat'):
'''shape(b_sz, caps_num, out_caps_num*out_caps_dim)'''
caps_uhat = tf.layers.dense(caps, out_caps_num * out_caps_dim, activation=tf.tanh)
caps_uhat = tf.reshape(caps_uhat, shape=[b_sz, tstp, out_caps_num, out_caps_dim])
return caps_uhat
def masked_routing_iter(caps_uhat, seqLen, iter_num, caps_ihat=None, w_rr=None):
'''
Args:
caps_uhat: shape(b_sz, tstp, out_caps_num, out_caps_dim)
seqLen: shape(b_sz)
iter_num: number of iteration
Returns:
V_ret: #shape(b_sz, out_caps_num, out_caps_dim)
'''
assert iter_num > 0
b_sz = tf.shape(caps_uhat)[0]
tstp = tf.shape(caps_uhat)[1]
out_caps_num = int(caps_uhat.get_shape()[2])
seqLen = tf.where(tf.equal(seqLen, 0), tf.ones_like(seqLen), seqLen)
mask = mkMask(seqLen, tstp) # shape(b_sz, tstp)
floatmask = tf.cast(tf.expand_dims(mask, axis=-1), dtype=tf.float32) # shape(b_sz, tstp, 1)
B = tf.zeros([b_sz, tstp, out_caps_num], dtype=tf.float32)
C_list = list()
for i in range(iter_num):
B_logits = B
C = tf.nn.softmax(B, axis=2) # shape(b_sz, tstp, out_caps_num)
C = tf.expand_dims(C * floatmask, axis=-1) # shape(b_sz, tstp, out_caps_num, 1)
weighted_uhat = C * caps_uhat # shape(b_sz, tstp, out_caps_num, out_caps_dim)
C_list.append(C)
S = tf.reduce_sum(weighted_uhat, axis=1) # shape(b_sz, out_caps_num, out_caps_dim)
V = _squash(S, axes=[2]) # shape(b_sz, out_caps_num, out_caps_dim)
V = tf.expand_dims(V, axis=1) # shape(b_sz, 1, out_caps_num, out_caps_dim)
if caps_ihat == None:
B = tf.reduce_sum(caps_uhat * V, axis=-1) + B # shape(b_sz, tstp, out_caps_num)
else:
B = tf.reduce_sum(caps_uhat * V, axis=-1) + 0.1 * tf.squeeze(
tf.matmul(tf.matmul(caps_uhat, tf.tile(w_rr, [tf.shape(caps_uhat)[0], tf.shape(caps_uhat)[1], 1, 1])),
tf.tile(caps_ihat, [1, tf.shape(caps_uhat)[1], 1, 1])),
axis=-1) + B # shape(b_sz, tstp, out_caps_num)
V_ret = tf.squeeze(V, axis=[1]) # shape(b_sz, out_caps_num, out_caps_dim)
S_ret = S
C_ret = tf.squeeze(tf.stack(C_list), axis=[4])
return V_ret, S_ret, C_ret, B_logits
def margin_loss(y_true, y_pred):
"""
:param y_true: [None, n_classes]
:param y_pred: [None, n_classes]
:return: a scalar loss value.
"""
L = y_true * tf.square(tf.maximum(0., 0.9 - y_pred)) + \
0.5 * (1 - y_true) * tf.square(tf.maximum(0., y_pred - 0.1))
assert_inf_L = tf.Assert(tf.logical_not(tf.reduce_any(tf.is_inf(L))),
['assert_inf_L', L], summarize=100)
assert_nan_L = tf.Assert(tf.logical_not(tf.reduce_any(tf.is_nan(L))),
['assert_nan_L', L], summarize=100)
with tf.control_dependencies([assert_inf_L, assert_nan_L]):
ret = tf.reduce_mean(tf.reduce_sum(L, axis=1))
return ret
def _squash(in_caps, axes):
'''
Squashing function corresponding to Eq. 1
Args:
in_caps: a tensor
axes: dimensions along which to apply squash
Returns:
vec_squashed: squashed tensor
'''
vec_squared_norm = tf.reduce_sum(tf.square(in_caps), axis=axes, keepdims=True)
scalar_factor = vec_squared_norm / (1 + vec_squared_norm) / tf.sqrt(vec_squared_norm + _EPSILON)
vec_squashed = scalar_factor * in_caps # element-wise
return vec_squashed