Skip to content

Latest commit

 

History

History
28 lines (18 loc) · 1.56 KB

README.md

File metadata and controls

28 lines (18 loc) · 1.56 KB

EmbeddedML

A Neural Network Library for Embedded "Edge" Devices

EmbeddedML enables embedded systems to directly learn and recognize events through on-device neural networks. This provides embedded systems with machine learning capability operating entirely independent of other computing resources for both Neural Network training and execution.

EmbeddedML was created to be an alternative to the limited options available for Artificial Neural Networks in C. It is meant to support students design "edge" devices capabable of machine learning. The library is built to be expandable and straightforward to manipulate.

EXAMPLES

GETTING STARTED

  • Two examples are provided to show how a simple application could use embeddedML in a learning task.
    • XOR
    • XOR-AND

For those experienced with SensorTile and the STMicroelectronics Datalog project...

STM SensorTile

  • Learning Orientation Based on Accelerometer Data
    • Video of performance on STM's SensorTile
  • Learning the XOR-AND Gate

The examples are complete EmbeddedML applications demonstrating training and testing EmbeddedML operation.

Now, for those learning about SensorTile please see the information below:

SensorTile: https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html

Tutorials to get started on the SensorTile platform (along with using EmbeddedML) can be found at https://sites.google.com/view/ucla-stmicroelectronics-iot/home courtesy of Dr. Kaiser and UCLA's ECE program. These are also provided in the SensorTile Tutorials folder.