Skip to content

Latest commit

 

History

History
485 lines (318 loc) · 10.6 KB

README.md

File metadata and controls

485 lines (318 loc) · 10.6 KB

Monom: An object mapper for MongoDB with type hints

Installation

$ pip install monom

About

Monom is designed to manage your models clearly and easily, which is as simple and thin as possible.

  • schema declaration using type hints

  • document validation on insert and update

  • default value, field alias, index declaration, custom converter and validator

  • minimum api, least memory burden


A Quick Example

from monom import *

class User(EmbeddedModel):
    name: str
    email: str

class Post(Model):
    user: User
    title: str
    content: str
    tags: List[str]
    rank: int
    visible: bool = True
    created_on: datetime = datetime.utcnow
    placeholder: Any

    class Meta:
        required = ['user', 'title']
        indexes = ['title']
        converters = {
            'title': lambda x: x.capitalize()
        }
        validators = {
            'title': lambda x: len(x) > 5
        }

    @property
    def url(self):
        return '/posts/' + str(self.pk)

    @classmethod
    def find_posts_by_lucy(cls):
        return Post.find({'user.name': 'Lucy'}).sort('created_on')

db = MongoClient().get_database('demo')
Post.set_db(db)
post = Post(
    user={'name': 'Lucy', 'email': 'foo@example.com'},
    # same as the above
    # user=User(name='Lucy', email='foo@example.com'),
    title='hello world',
    content='monom is awesome...',
    tags=['life', 'art']
)
post.save()
assert post.visible is True
assert isinstance(post.user, User)
assert post.user.name == 'Lucy'

Guide

Connection

No extra connection methods. Just pass pymongo's Database instance to your model.

from monom import Model, MongoClient

class MyModel(Model):
    pass

db = MongoClient().get_database('demo')
MyModel.set_db(db)

Field Type

  • str, int, float, bool, bytes, datetime, ObjectId: you are familiar with them already

  • dict: accepts a dict regardless of its items

  • list: accepts a list regardless of its items

  • subclass of EmbeddedModel: represents MongoDB's embedded document

  • List: List[the above type] or List[List[the above type]] or any nested depth

  • Any: any type that can be saved into MongoDB


Model

To create a new model object, provide values for its fields as constructor keyword arguments. Monom will convert and validate these values when constructing the new instance.

from monom import Model

class User(Model):
    name: str
    visible: bool = True

user = User(name='foo')

You can declare a field with an initial value, which acts as the field's default value. If the value is a callable, it will be called on each saving or inserting.

Class Methods

  • set_db(db)

Pass a pymongo.database.Database to the model.

  • set_collection(collection)

Pass a string or a pymongo.collection.Collection to the model.

If it isn't called explicitly, plural form of the model's name will be the collection name.

  • get_db()

  • get_collection()

Properties

  • pk

An alias for the primary key (_id in MongoDB).

Methods

  • save(full_update=False, *kw)

Save the data into MongoDB.

  1. The new document will be inserted into MongoDB.

  2. The existing document will be updated atomically using operator '$set' and '$unset'.

  3. list mutation cannot be tracked; but you can pass an keyword argument full_update=True to perform a full update.

from monom import *

class User(Model):
    name: str
    email: str
    hobbits: List[str]
    active: bool = True
    created_on: datetime = datetime.utcnow

# connect to mongodb
User.set_db(MongoClient().get_database('demo'))

# insert a doc
User(
    name='Lucy',
    email='lucy@foo.com',
    hobbits=['music', 'sport']
).save()

# find a doc filtering out some fields
user = User.find_one({}, {'created_on': False})

user.name = 'foobar'
del user.email

# saved with an atomic update
user.save()

user.hobbits.append('programming')
# to save a doc with changed list items, you should set `full_update=True`
user.save(full_update=True)
  • save_multiple(models, **kw)

Works like save but applies to multiple models in a bulk write; currently supports bulks of insertOne and updateOne.

  • delete(**kw)

Delete the data from MongoDB.

  • to_dict()

Return an ordered dict containing the instance's data with the same order as the field definition order.

  • to_json(**kw)

Return a json string. Some specific types (ObjectId, datetime, etc.) will be handled correctly.

  • get(name, default=None)

Return the value for name or default.

CRUD Methods

Monom adds no extra methods to operate MongoDB.

It proxies a subset of methods in pymongo.collection:Collection, which will perform data cleaning and convert the data from query operations to the model object.

  • insert_one, insert_many, replace_one, update_one, update_many, find_one_and_update, find_one_and_replace will perform data conversion and validation.

  • find_one, find, find_one_and_delete, find_one_and_replace, find_one_and_update will convert query results to the corresponding model instance.

find returns a Cursor of model instances instead of dicts. Before dump your documents to json, remember to do a small conversion.

from monom import *

class BinData(Model):
    name: str
    data: bytes

BinData.set_db(MongoClient().get_database('demo'))
BinData(name='foo', data=b'abc').save()
BinData(name='bar', data=b'xyz').save()

json_dumps([bd.to_dict() for bd in BinData.find()])
# or call pymongo's methods directly
json_dumps(BinData.get_collection().find())

Meta

You can add extra constraints for your models by defining an inner class named Meta in your model or embedded model.

  • required: the field must exist in your data
from monom import Model

class User(Model):
    name: str
    email: str

    class Meta:
        required = ['name']
  • validators and converters
from monom import Model

class User(Model):
    name: str
    age: int

    class Meta:
        validators = {
            'age': lambda x: x < 200
        }
        converters = {
            'name': lambda x: x.strip()
        }
  • aliases: sometimes you may want to save some fields in another names
from monom import Model

class User(Model):
    id: int
    first_name: str

    class Meta:
        aliases = [
            ('id', '_id'),
            ('first_name', 'firstName'),
        ]

user = User(id=42, first_name='Lucy')
user.id
# 42
user.to_dict()
# {'_id': 42, 'firstName': 'Lucy'}
  • Indexes
from monom import Model, DESCENDING

class FancyModel(Model):
    class Meta:
        indexes = [
            'f1',  # a single key ascending index
            ('f2', DESCENDING),  # a single key descending index
            ['f3', 'f4'],  # a compound index both ascending
            ['f5', ('f6', DESCENDING)],  # a compound index on 'f5' ascending and 'f6' descending
            [('f7', DESCENDING), ('f8', DESCENDING)],  # a compound index both descending
            {'key': 'f9', 'expire_after_seconds': 3600, 'unique': True}  # a single key ascending index with ttl and unique property
        ]

Index declaration cannot appear in embedded model.


Options

  • dict_class

The underlying data of model instance are saved in an ordered dict. You may change it to bson.son.SON or other compatible types. Default value is collections.OrderedDict.

  • warn_extra_data

Whether checks extra data that aren't declared in the model and emits some warnings. Default value is True.

  • auto_build_index

Whether enables auto index creation or deletion. You may disable it when in production because index management may be performed as part of a deployment system. Default value is True.

Theses options can be set on Model or the subclass of Model; if set on Model, all subclasses will inherit them.

from monom import Model
from bson.son import SON

Model.dict_class = SON

class User(Model):
    name: str

user = User(name='foo')
assert isinstance(user.to_dict(), SON)

Helpers

  • switch_db: switch to a different database temporarily
from monom import Model, MongoClient, switch_db

class FancyModel(Model):
    pass

foo_db = MongoClient().get_database('foo')
FancyModel.set_db(foo_db)

bar_db = MongoClient().get_database('bar')

with switch_db(FancyModel, bar_db):
    assert FancyModel.get_db().name == 'bar'
  • switch_collection: switch to a different collection temporarily
from monom import Model, MongoClient, switch_collection

class FancyModel(Model):
    pass

db = MongoClient().get_database('my-db')
FancyModel.set_db(db)

with switch_collection(FancyModel, 'foobar'):
    assert FancyModel.get_collection().name == 'foobar'

Logging

In several cases, some warnings will be emitted. If that's annoying, you can change the logger level or set a new logger.

import logging
from monom import get_logger, set_logger

# change level
get_logger().setLevel(logging.ERROR)

# or set a new logger
set_logger(logging.getLogger('foobar'))

Good Old Django-Style

If you like the classical style, here you are.

from monom.fields import *
from monom import Model, EmbeddedModel, datetime

class Comment(EmbeddedModel):
    content = StringField()
    created_on = DateTimeField(default=datetime.utcnow)

class Post(Model):
    id = ObjectIdField(name='_id')
    title = StringField(required=True, converter=lambda x: x.capitalize())
    content = StringField(validator=lambda x: len(x) > 50)
    comments = ArrayField(EmbeddedField(Comment))
    rank = IntField(max_value=100)
    visible = BooleanField(default=True)

Using this style, you can pass name (alias aka), required, default, converter, validator as constructor keyword arguments.

One-to-one match with type hints

  • str -> StringField

  • int -> IntField

  • float -> FloatField

  • bool -> BooleanField

  • bytes -> BytesField

  • datetime -> DateTimeField

  • ObjectId -> ObjectIdField

  • dict -> DictField

  • subclass of EmbeddedModel -> EmbeddedField

  • list -> ListField

  • List -> ArrayField

  • Any -> AnyField


Caveats

  • Inheritance of fields through class inheritance cannot work, for it will cause confusing relationships between model and embedded model.

  • You'd better not mix type-hints style with django-orm style; if you insist on that the field definition order may not be reserved.

Tests

To run the test suite, ensure you are running a local MongoDB instance on the default port and have pytest installed.

$ pytest

Dependencies

  • Python >= 3.6
  • pymongo >= 3.7

License

MIT