-
Notifications
You must be signed in to change notification settings - Fork 3
/
kernel.cu
252 lines (215 loc) · 7.43 KB
/
kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
* Copyright (C) 2016 Takuya KOUMURA
* https://github.com/takuya-koumura/birdsong-recognition
*
* This file is part of Birdsong Recognition.
*
* Birdsong Recognition is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Birdsong Recognition is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Birdsong Recognition. If not, see <http://www.gnu.org/licenses/>.
*/
#include <device_launch_parameters.h>
#include <cmath>
extern "C" __global__ void SeqSoftmaxConvBackwardDoubleChar(const char *label, double *diff, const int *size, int labelShiftY, int labelShiftX)
{
int batchSize = size[0];
int numChannel= size[1];
int height = size[2];
int width = size[3];
int singleSize= size[4];
int singleHeight= size[5];
int singleWidth= size[6];
int labelHeight = size[7];
int labelWidth = size[8];
int labelShiftUpperH = size[9];
int labelShiftUpperW = size[10];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batchSize*height*width*singleHeight*singleWidth) return;
int x = idx%width;
int i = (idx - x) / width;
int y = i%height;
i = (idx - y) / height;
int sx = i%singleWidth;
i = (i - sx) / singleWidth;
int sy = i%singleHeight;
int b = i / singleHeight;
char la = label[b*labelWidth*labelHeight + (y*labelShiftUpperH + labelShiftY + sy)*labelWidth + x*labelShiftUpperW + labelShiftX + sx];
if (la < 0)
{
for (int li = 0; li < singleSize; ++li)
{
int index = ((b*numChannel + (li*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
diff[index] = 0;
}
return;
}
int index = ((b*numChannel + (la*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
diff[index] -= 1;
}
extern "C" __global__ void SeqSoftmaxConvBackwardFloatChar(const char *label, float *diff, const int *size, int labelShiftY, int labelShiftX)
{
int batchSize = size[0];
int numChannel = size[1];
int height = size[2];
int width = size[3];
int singleSize = size[4];
int singleHeight = size[5];
int singleWidth = size[6];
int labelHeight = size[7];
int labelWidth = size[8];
int labelShiftUpperH = size[9];
int labelShiftUpperW = size[10];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batchSize*height*width*singleHeight*singleWidth) return;
int x = idx%width;
int i = (idx - x) / width;
int y = i%height;
i = (idx - y) / height;
int sx = i%singleWidth;
i = (i - sx) / singleWidth;
int sy = i%singleHeight;
int b = i / singleHeight;
char la = label[b*labelWidth*labelHeight + (y*labelShiftUpperH + labelShiftY + sy)*labelWidth + x*labelShiftUpperW + labelShiftX + sx];
if (la < 0)
{
for (int li = 0; li < singleSize; ++li)
{
int index = ((b*numChannel + (li*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
diff[index] = 0;
}
return;
}
int index = ((b*numChannel + (la*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
diff[index] -= 1;
}
extern "C" __global__ void SeqSoftmaxConvErrorDoubleChar(double *error, const double *output, const char *label, const int *size, int labelShiftY, int labelShiftX, double outputLowerForError)
{
int batchSize = size[0];
int numChannel = size[1];
int height = size[2];
int width = size[3];
int singleSize = size[4];
int singleHeight = size[5];
int singleWidth = size[6];
int labelHeight = size[7];
int labelWidth = size[8];
int labelShiftUpperH = size[9];
int labelShiftUpperW = size[10];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batchSize*height*width*singleHeight*singleWidth) return;
int x = idx%width;
int i = (idx - x) / width;
int y = i%height;
i = (idx - y) / height;
int sx = i%singleWidth;
i = (i - sx) / singleWidth;
int sy = i%singleHeight;
int b = i / singleHeight;
int labelIndex = b*labelWidth*labelHeight + (y*labelShiftUpperH + labelShiftY + sy)*labelWidth + x*labelShiftUpperW + labelShiftX + sx;
char la = label[labelIndex];
if (la < 0)
{
error[idx] = 0;
return;
}
int index = ((b*numChannel + (la*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
double o = output[index];
if (isnan(o)) error[idx] = o;
else
{
if (o < outputLowerForError) o = outputLowerForError;
error[idx] = -log(o);
}
}
extern "C" __global__ void SeqSoftmaxConvErrorFloatChar(float *error, const float *output, const char *label, const int *size, int labelShiftY, int labelShiftX, float outputLowerForError)
{
int batchSize = size[0];
int numChannel = size[1];
int height = size[2];
int width = size[3];
int singleSize = size[4];
int singleHeight = size[5];
int singleWidth = size[6];
int labelHeight = size[7];
int labelWidth = size[8];
int labelShiftUpperH = size[9];
int labelShiftUpperW = size[10];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batchSize*height*width*singleHeight*singleWidth) return;
int x = idx%width;
int i = (idx - x) / width;
int y = i%height;
i = (idx - y) / height;
int sx = i%singleWidth;
i = (i - sx) / singleWidth;
int sy = i%singleHeight;
int b = i / singleHeight;
int labelIndex = b*labelWidth*labelHeight + (y*labelShiftUpperH + labelShiftY + sy)*labelWidth + x*labelShiftUpperW + labelShiftX + sx;
char la = label[labelIndex];
if (la < 0)
{
error[idx] = 0;
return;
}
int index = ((b*numChannel + (la*singleHeight + sy)*singleWidth + sx)*height + y)*width + x;
float o = output[index];
if (isnan(o)) error[idx] = o;
else
{
if (o < outputLowerForError) o = outputLowerForError;
error[idx] = -log(o);
}
}
extern "C" __global__ void FillFloat(float *vector, float value, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size) return;
vector[idx] = value;
}
extern "C" __global__ void FillDouble(double *vector, double value, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size) return;
vector[idx] = value;
}
extern "C" __global__ void AdamFloat(float *param, const float* grad, float* moment, float* moment2, const float* hyperParam, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size) return;
float alpha = hyperParam[0];
float beta1= hyperParam[1];
float beta2 = hyperParam[2];
float epsilon = hyperParam[3];
float beta1T = hyperParam[4];
float beta2T = hyperParam[5];
moment[idx] = beta1*moment[idx] + (1 - beta1)*grad[idx];
moment2[idx] = beta2*moment2[idx] + (1 - beta2)*grad[idx] * grad[idx];
float alphaT = alpha*sqrt(1 - beta2T) / (1 - beta1T);
float delta = alphaT*moment[idx] / (sqrt(moment2[idx]) + epsilon);
param[idx] -= delta;
}
extern "C" __global__ void AdamDouble(double *param, const double* grad, double* moment, double* moment2, const double* hyperParam, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size) return;
double alpha = hyperParam[0];
double beta1 = hyperParam[1];
double beta2 = hyperParam[2];
double epsilon = hyperParam[3];
double beta1T = hyperParam[4];
double beta2T = hyperParam[5];
moment[idx] = beta1*moment[idx] + (1 - beta1)*grad[idx];
moment2[idx] = beta2*moment2[idx] + (1 - beta2)*grad[idx] * grad[idx];
double alphaT = alpha*sqrt(1 - beta2T) / (1 - beta1T);
double delta = alphaT*moment[idx] / (sqrt(moment2[idx]) + epsilon);
param[idx] -= delta;
}