We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
相同的parser在train.py文件夹下可以正常运行,但在ann_to_snn.py下报错。 我的数据集图像大小为800*800,修改下列parser为: parser.add_argument('--img-size', nargs='+', type=int, default=[800, 800], help='[min_train, max-train, test]') 会报错ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416])),如果改为了default=[416, 416],依然报错:ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416])) 请问如何修改才能不报错?
以下为具体报错信息:
C:\Users\Lenovo.conda\envs\venv\yolov3-envs\python.exe E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py Namespace(augment=False, batch_size=1, cache_images=False, cfg='cfg/yolov3.cfg', channel_wise=False, conf_thres=0.001, data='data/myvoc.data', device='0', img_size=[416, 416, 416], iou_thres=0.5, multi_scale=False, rect=False, reset_mode='subtraction', save_file='yolov3-my-snn', save_json=False, single_cls=False, statistics_iters=30, task='test', timesteps=100, weights='weights/best.pt') Using CUDA device0 _CudaDeviceProperties(name='NVIDIA GeForce RTX 3060 Laptop GPU', total_memory=6143MB)
Caching labels E:\DataSate\labels\train.npy (5043 found, 0 missing, 0 empty, 0 duplicate, for 5043 images): 100%|██████████| 5043/5043 [00:00<00:00, 19846.45it/s] Model Summary: 222 layers, 6.15237e+07 parameters, 6.15237e+07 gradients add node conv1: ['dag_input0']->['conv1_out1'] Traceback (most recent call last): File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py", line 182, in transformer.inference_get_status(dataloader, opt.statistics_iters) File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\snn_transformer.py", line 94, in inference_get_status self.init_dag([data]) File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\snn_transformer.py", line 69, in init_dag self.snn_dag = ann_parser.parse_ann_model(self.original_net, inputs) File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 221, in parse_ann_model model(*warpped_input) File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py", line 65, in forward x = self.listi File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\container.py", line 117, in forward input = module(input) File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\conv.py", line 423, in forward return self._conv_forward(input, self.weight) File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\conv.py", line 420, in _conv_forward self.padding, self.dilation, self.groups) File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 69, in conv2d_wrapper in_nodes = [find_node_by_tensor(inp)] File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 10, in find_node_by_tensor raise ValueError("cannot find tensor Size", tensor.size()) ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416]))
Process finished with exit code 1
The text was updated successfully, but these errors were encountered:
同样遇到这个问题,请问你解决了吗
Sorry, something went wrong.
@sun133233 请问您解决了吗
请问你们跑通这个代码了码,为啥我用gpu训练的时候,老显示2个设备报错 RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
No branches or pull requests
相同的parser在train.py文件夹下可以正常运行,但在ann_to_snn.py下报错。
我的数据集图像大小为800*800,修改下列parser为:
parser.add_argument('--img-size', nargs='+', type=int, default=[800, 800], help='[min_train, max-train, test]')
会报错ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416])),如果改为了default=[416, 416],依然报错:ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416]))
请问如何修改才能不报错?
以下为具体报错信息:
C:\Users\Lenovo.conda\envs\venv\yolov3-envs\python.exe E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py
Namespace(augment=False, batch_size=1, cache_images=False, cfg='cfg/yolov3.cfg', channel_wise=False, conf_thres=0.001, data='data/myvoc.data', device='0', img_size=[416, 416, 416], iou_thres=0.5, multi_scale=False, rect=False, reset_mode='subtraction', save_file='yolov3-my-snn', save_json=False, single_cls=False, statistics_iters=30, task='test', timesteps=100, weights='weights/best.pt')
Using CUDA device0 _CudaDeviceProperties(name='NVIDIA GeForce RTX 3060 Laptop GPU', total_memory=6143MB)
Caching labels E:\DataSate\labels\train.npy (5043 found, 0 missing, 0 empty, 0 duplicate, for 5043 images): 100%|██████████| 5043/5043 [00:00<00:00, 19846.45it/s]
Model Summary: 222 layers, 6.15237e+07 parameters, 6.15237e+07 gradients
add node conv1: ['dag_input0']->['conv1_out1']
Traceback (most recent call last):
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py", line 182, in
transformer.inference_get_status(dataloader, opt.statistics_iters)
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\snn_transformer.py", line 94, in inference_get_status
self.init_dag([data])
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\snn_transformer.py", line 69, in init_dag
self.snn_dag = ann_parser.parse_ann_model(self.original_net, inputs)
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 221, in parse_ann_model
model(*warpped_input)
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\ann_to_snn.py", line 65, in forward
x = self.listi
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\container.py", line 117, in forward
input = module(input)
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\conv.py", line 423, in forward
return self._conv_forward(input, self.weight)
File "C:\Users\Lenovo.conda\envs\venv\yolov3-envs\lib\site-packages\torch\nn\modules\conv.py", line 420, in _conv_forward
self.padding, self.dilation, self.groups)
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 69, in conv2d_wrapper
in_nodes = [find_node_by_tensor(inp)]
File "E:\SNN\PyTorch-Spiking-YOLOv3-ultralytics\spiking_utils\ann_parser.py", line 10, in find_node_by_tensor
raise ValueError("cannot find tensor Size", tensor.size())
ValueError: ('cannot find tensor Size', torch.Size([1, 32, 416, 416]))
Process finished with exit code 1
The text was updated successfully, but these errors were encountered: