|
| 1 | +# K Closest Points to Origin |
| 2 | + |
| 3 | +Page on leetcode: https://leetcode.com/problems/k-closest-points-to-origin/ |
| 4 | + |
| 5 | +## Problem Statement |
| 6 | + |
| 7 | +Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0). The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2). You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in). |
| 8 | + |
| 9 | +### Constraints |
| 10 | + |
| 11 | +- 1 <= k <= points.length <= 104 |
| 12 | +- -104 < xi, yi < 104 |
| 13 | + |
| 14 | +### Example |
| 15 | + |
| 16 | +``` |
| 17 | +Input: points = [[1,3],[-2,2]], k = 1 |
| 18 | +Output: [[-2,2]] |
| 19 | +Explanation: |
| 20 | +The distance between (1, 3) and the origin is sqrt(10). |
| 21 | +The distance between (-2, 2) and the origin is sqrt(8). |
| 22 | +Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. |
| 23 | +We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]]. |
| 24 | +``` |
| 25 | + |
| 26 | +## Solution |
| 27 | + |
| 28 | +Any order so sorting isn't required. This is an optimization problem (minimizing distance to origin) so my mind goes to greedy methods. A heap might be a good data structure. I will need to look at all sets of points so the best conceivable time complexity would be O(n). I'm not sure if that is attainable though. |
| 29 | + |
| 30 | +Edge case would be 1 point provided, with a k of 1. Or k = num of points. |
| 31 | + |
| 32 | +### Pseudocode |
| 33 | + |
| 34 | +1. If points length equals k then return points |
| 35 | +2. Create helper function that returns euclidean distance |
| 36 | +3. Heapify array to Min-Heap |
| 37 | +4. Remove k smallest points from heap to array and return array |
| 38 | + |
| 39 | +### Initial Attempt |
| 40 | + |
| 41 | +```javascript |
| 42 | +const kClosest = function (points, k) { |
| 43 | + if (points.length === k) { |
| 44 | + return points; |
| 45 | + } |
| 46 | + |
| 47 | + function dist(point) { |
| 48 | + return Math.sqrt(point[0] ** 2 + point[1] ** 2); |
| 49 | + } |
| 50 | + |
| 51 | + function heapify(arr) { |
| 52 | + for (let i = points.length - 1; i >= 0; i--) { |
| 53 | + const right = 2 * i + 2; |
| 54 | + const left = 2 * i + 1; |
| 55 | + if (arr[right]) { |
| 56 | + if (dist(arr[right]) < dist(arr[i])) { |
| 57 | + const temp = arr[i]; |
| 58 | + arr[i] = arr[right]; |
| 59 | + arr[right] = temp; |
| 60 | + } |
| 61 | + } |
| 62 | + if (arr[left]) { |
| 63 | + if (dist(arr[left]) < dist(arr[i])) { |
| 64 | + const temp = arr[i]; |
| 65 | + arr[i] = arr[left]; |
| 66 | + arr[left] = temp; |
| 67 | + } |
| 68 | + } |
| 69 | + } |
| 70 | + return arr; |
| 71 | + } |
| 72 | + |
| 73 | + function deleteFromHeap(arr) { |
| 74 | + const first = arr.shift(); |
| 75 | + const last = arr.pop(); |
| 76 | + arr.unshift(last); |
| 77 | + bubbleDown(arr, 0); |
| 78 | + return first; |
| 79 | + } |
| 80 | + |
| 81 | + function bubbleDown(arr, point) { |
| 82 | + if (!arr[point]) { |
| 83 | + return; |
| 84 | + } |
| 85 | + const right = 2 * i + 2; |
| 86 | + const left = 2 * i + 1; |
| 87 | + if (arr[left] < arr[right] && arr[left] < arr[point]) { |
| 88 | + arr[point] = arr[left]; |
| 89 | + arr[left] = bubbleDown(arr, left); |
| 90 | + } else if (arr[right] < arr[left] && arr[right] < arr[point]) { |
| 91 | + arr[point] = arr[right]; |
| 92 | + arr[right] = bubbleDown(arr, right); |
| 93 | + } |
| 94 | + return; |
| 95 | + } |
| 96 | + |
| 97 | + let result = []; |
| 98 | + for (let i = 0; i < k; i++) { |
| 99 | + result.push(deleteFromHeap(points)); |
| 100 | + } |
| 101 | + return result; |
| 102 | +}; |
| 103 | +``` |
| 104 | + |
| 105 | +### Second Attempt |
| 106 | + |
| 107 | +I've used the max heap approach which has a time complexity of O(nlogk) and a space complexity of O(k). |
| 108 | + |
| 109 | +```javascript |
| 110 | +const kClosest = function (points, k) { |
| 111 | + if (points.length === k) { |
| 112 | + return points; |
| 113 | + } |
| 114 | + |
| 115 | + const maxHeap = []; |
| 116 | + |
| 117 | + // Add points to the heap |
| 118 | + for (let i = 0; i < points.length; i++) { |
| 119 | + if (maxHeap.length >= k && dist(points[i]) > dist(maxHeap[0])) { |
| 120 | + continue; |
| 121 | + } |
| 122 | + |
| 123 | + addToHeap(points[i]); |
| 124 | + if (maxHeap.length > k) { |
| 125 | + removeFromHeap(); |
| 126 | + } |
| 127 | + } |
| 128 | + |
| 129 | + // Helper Functions |
| 130 | + function dist(point) { |
| 131 | + return point[0] ** 2 + point[1] ** 2; |
| 132 | + } |
| 133 | + |
| 134 | + function addToHeap(point) { |
| 135 | + maxHeap.push(point); |
| 136 | + heapifyUp(maxHeap, maxHeap.length - 1); |
| 137 | + } |
| 138 | + |
| 139 | + function heapifyUp(arr, node) { |
| 140 | + const parentNode = Math.floor((node - 1) / 2); |
| 141 | + if (parentNode < 0) { |
| 142 | + return; |
| 143 | + } |
| 144 | + if (dist(arr[node]) > dist(arr[parentNode])) { |
| 145 | + const temp = arr[parentNode]; |
| 146 | + arr[parentNode] = arr[node]; |
| 147 | + arr[node] = temp; |
| 148 | + heapifyUp(arr, parentNode); |
| 149 | + } |
| 150 | + return; |
| 151 | + } |
| 152 | + |
| 153 | + function removeFromHeap() { |
| 154 | + maxHeap.shift(); |
| 155 | + maxHeap.unshift(maxHeap.pop()); |
| 156 | + heapifyDown(maxHeap, 0); |
| 157 | + } |
| 158 | + |
| 159 | + function heapifyDown(arr, node) { |
| 160 | + const right = 2 * node + 2; |
| 161 | + const left = 2 * node + 1; |
| 162 | + if (right <= arr.length - 1) { |
| 163 | + if (dist(arr[right]) > dist(arr[node])) { |
| 164 | + const temp = arr[node]; |
| 165 | + arr[node] = arr[right]; |
| 166 | + arr[right] = temp; |
| 167 | + heapifyDown(arr, right); |
| 168 | + } |
| 169 | + } |
| 170 | + if (left <= arr.length - 1) { |
| 171 | + if (dist(arr[left]) > dist(arr[node])) { |
| 172 | + const temp = arr[node]; |
| 173 | + arr[node] = arr[left]; |
| 174 | + arr[left] = temp; |
| 175 | + heapifyDown(arr, left); |
| 176 | + } |
| 177 | + } |
| 178 | + return; |
| 179 | + } |
| 180 | + |
| 181 | + return maxHeap; |
| 182 | +}; |
| 183 | +``` |
| 184 | + |
| 185 | +### Optimized Solution |
| 186 | + |
| 187 | +There are a few different ways to solve this problem. Good examples and discussion can be seen here: https://leetcode.com/problems/k-closest-points-to-origin/discuss/762781/javascript-sort-minHeap-and-maxHeap-solutions |
| 188 | + |
| 189 | +I would say the min heap approach is the most ideal. |
| 190 | + |
| 191 | +```javascript |
| 192 | +var kClosest = function (points, k) { |
| 193 | + // we can build the heap in place |
| 194 | + let p = Math.floor((points.length - 2) / 2); // last parent |
| 195 | + for (let i = p; i >= 0; i--) { |
| 196 | + heapifyDown(points, i, distance); |
| 197 | + } |
| 198 | + |
| 199 | + // now we need to remove the smallest (points[0]) k times |
| 200 | + let solution = []; |
| 201 | + for (let i = 0; i < k; i++) { |
| 202 | + solution.push(remove(points, distance)); |
| 203 | + } |
| 204 | + |
| 205 | + return solution; |
| 206 | + |
| 207 | + // read 0, replace 0 with last position, heapifyDown |
| 208 | + function remove(heap, weightFunction) { |
| 209 | + let val = heap[0]; |
| 210 | + heap[0] = heap.pop(); |
| 211 | + heapifyDown(heap, 0, weightFunction); |
| 212 | + return val; |
| 213 | + } |
| 214 | + |
| 215 | + // compare with children, swap with smallest, repeat |
| 216 | + function heapifyDown(heap, idx, weightFunction) { |
| 217 | + let left = 2 * idx + 1; |
| 218 | + let right = 2 * idx + 2; |
| 219 | + let smallest = left; |
| 220 | + |
| 221 | + if (left >= heap.length) return; |
| 222 | + |
| 223 | + if (right < heap.length && weightFunction(heap[left]) > weightFunction(heap[right])) { |
| 224 | + smallest = right; |
| 225 | + } |
| 226 | + |
| 227 | + if (weightFunction(heap[idx]) > weightFunction(heap[smallest])) { |
| 228 | + [heap[idx], heap[smallest]] = [heap[smallest], heap[idx]]; |
| 229 | + heapifyDown(heap, smallest, weightFunction); |
| 230 | + } |
| 231 | + } |
| 232 | + |
| 233 | + function distance(point) { |
| 234 | + return point[0] * point[0] + point[1] * point[1]; |
| 235 | + } |
| 236 | +}; |
| 237 | +``` |
0 commit comments