-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
844 lines (734 loc) · 33.4 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import os
import sys
import time
import json
import pickle
import argparse
import numpy as np
from datetime import datetime
from easydict import EasyDict as edict
import torch
class Logger():
def __init__(self,
tb_log_dir='./results/tflog',
tb_filter='',
tb_log_hist=False,
separator_len=100):
self.tb_log_hist = tb_log_hist
try:
from tensorboardX import SummaryWriter
print('Use tensorboardX as logger.')
self.tb_logger = SummaryWriter(tb_log_dir)
except:
print('WARNING: Can\'t import tensorboardX, you can install by:\n'
'pip install tensorboardX && pip install tensorboard')
self.tb_log_hist = False
self.tb_logger = None
self.tb_filter = tb_filter
self.total_time = 0.0
self.num_runs = 0
self.losses = {}
self.metrics = {}
self.separator_len = separator_len
def tic(self):
self.start_time = time.time()
def toc(self):
diff_time = time.time() - self.start_time
self.total_time += diff_time
self.num_runs += 1
self.average_time = self.total_time / self.num_runs
return diff_time
def add_loss(self, name, loss):
self.losses[name] = loss.mean(dim=0, keepdim=True)
def add_metric(self, name, metric):
self.metrics[name] = metric
def total_loss(self):
total_loss = 0
for k, loss in self.losses.items():
total_loss += loss
return total_loss
def log_train(self, epoch, global_step, lr, num_steps, step, num_steps_per_epoch, params_dict):
def _log_to_terminal():
eta_seconds = self.average_time * (num_steps - global_step)
hours, remainder = divmod(eta_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
lines = \
'[Epoch {:d} ({:d}/{:d})][Step {:d} ({:.2f}%)][Lr {}][Time {:.4f}s]'\
'[ETA {:d}h{:d}m{:d}s][{}]\n'.format(
epoch + 1, step + 1, num_steps_per_epoch, global_step,
global_step * 100.0 / num_steps, lr, self.average_time, int(hours),
int(minutes), int(seconds), datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
separator = '-' * self.separator_len + '\n'
lines += separator
lines += ('{:>' + str(self.separator_len // 2) + '} = {:<.6f}\n').format(
'total_loss', self.total_loss())
lines += separator
for k, v in self.losses.items():
lines += ('{:>' + str(self.separator_len // 2) + '} = {:<.6f}\n').format(k, v)
lines += separator
print(lines)
def _log_to_tensorboard():
for k, loss in self.losses.items():
name = 'training_losses/{}'.format(k)
self.tb_logger.add_scalar(name, loss.item(), global_step)
if self.tb_log_hist:
for k, v in parmas_dict:
if self.tb_filter in k:
self.tb_tblogger.add_histogram(k, v, global_step)
_log_to_terminal()
if self.tb_logger:
_log_to_tensorboard()
def log_test(self, global_step, log_to_tensorboard=True):
def _log_to_terminal():
title = 'Evaluation:'
separator = '*' * self.separator_len + '\n'
left_len = (self.separator_len - len(title)) // 2
right_len = self.separator_len - left_len - len(title)
lines = '*' * left_len + title + '*' * right_len + '\n'
for k, v in self.metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
lines += ('{:>' + str(self.separator_len // 2) + '} = {:<.6f}\n').format(k, v)
lines += separator
print(lines)
def _log_to_tensorboard():
for k, metric in self.metrics.items():
name = 'test_metrics/{}'.format(k)
if isinstance(metric, torch.Tensor):
metric = metric.item()
self.tb_logger.add_scalar(name, metric, global_step)
_log_to_terminal()
if self.tb_logger and log_to_tensorboard:
_log_to_tensorboard()
class Table():
'''
Table with field_names, for example:
['input', 'output']
['rgb_image1', 'class_probs1']
['rgb_image2', 'class_probs2']
# Create table:
table = Table(['input', 'output'])
# Clear table:
table.clear()
# Add row:
table.add(['rgb_image1', 'class_probs1']) # add by list
table.add({'input': 'rgb_image2', 'output': 'class_prob2'}) # add by dict
# Iterate over table:
for line in table:
print(type(line))
print(line)
# output:
# <class 'dict'>
# {'input': 'rgb_image2', 'output': 'class_prob2'}
'''
def __init__(self, field_names=None):
self.field_names = field_names
if field_names is not None:
assert isinstance(field_names, list), '\'field_names\' must be list of string!'
self.table = []
def clear(self):
self.table = []
def add(self, input):
if isinstance(input, list):
assert self.field_names is not None, \
'\'field_names\' must be set before add row by list!'
assert len(self.field_names) == len(input), \
'input length mismatch with field_name length {} vs {}'.format(
len(input), len(self.field_names))
elif isinstance(input, dict):
if self.field_names is None:
assert len(self.table) == 0, 'table should not be set before field_names be set!'
self.field_names = list(sorted(input.keys()))
input = [input[field_name] for field_name in self.field_names]
else:
raise ValueError('Input type must be list or dict, but {}'.format(type(input)))
assert len(self.field_names) == len(input), \
'input length mismatch with field_name length {} vs {}'.format(
len(input), len(self.field_names))
self.table.append(input)
def __len__(self):
return len(self.table)
def __iter__(self):
self.iter = iter(self.table)
return self
def __next__(self):
if self.field_names is None:
raise StopIteration
return dict(zip(self.field_names, next(self.iter)))
class Pipeline():
'''
class of train/test/deploy pipeline
'''
def __init__(self, args):
self.cfg = self._load_cfg(args.cfg)
self.pipe_cfg = self.cfg.PIPELINE
assert args.mode in ['train', 'test', 'deploy'], \
'Unknow mode {}, must be train, test or deploy.'.format(args.mode)
self.mode = args.mode
self.train_batch_size = self.pipe_cfg.TRAIN.BATCH_SIZE
self.test_batch_size = self.pipe_cfg.TEST.BATCH_SIZE
self.logger = Logger(
tb_log_dir=self.pipe_cfg.TRAIN.RESULTS_ROOT + '/tflog',
tb_filter=self.pipe_cfg.TRAIN.TB_FLITER,
tb_log_hist=self.pipe_cfg.TRAIN.TB_LOG_PARAM_HIST)
self._eval_table = Table()
self.device_settings = self._set_device(args.cuda)
self.device = self.device_settings['device']
print('Load dataloader...')
self.train_data_loader, self.test_data_loader = self._load_data()
print('Load model...')
self.model_cfg, self.model = self._load_model()
print('Load optimizer...')
self.optimizer = self._load_optimizer()
print('Load weight...')
self._load_weight()
print('Set parallel...')
self._set_parallel()
print('Start run...')
self.global_step = 0
if args.mode == 'train':
self._run_train()
elif args.mode == 'test':
self._run_test()
else:
self._run_deploy()
def load_default_model_cfg(self):
'''
Override this function if has model config, it will be called by Pipeline automatically.
'''
return edict()
def loss(self, data, output):
'''
Override this to define a loss function, it will be called by Pipeline automatically.
data: data directly from data loader
output: model output
'''
NotImplementedError
def add_loss(self, name, loss):
'''
Call this function in self.loss() to collect the losses to Pipeline.
The added loss will be used to:
1. optimize the network
2. log to terminal
3. log to tensorboard
'''
self.logger.add_loss(name, loss)
def eval_step(self, data, output):
'''
Override this function to save per step test result to self._eval_table, it will be used in
self.eval(), eval_step will run in every test step
data: data directly from data loader
output: model output
'''
NotImplementedError
def add_eval(self, input):
'''
Call this function in eval_step to save per step test result.
'''
self._eval_table.add(input)
def eval(self):
'''
Override this function to do evaluation after testing over all test data examples, you can
get all test result by calling self.eval_table(), after evaluation, call self.add_metric()
to collect evaluation metric to Pipeline.
'''
NotImplementedError
def eval_table(self):
'''
Call this function to get all test result.
'''
return self._eval_table
def add_metric(self, name, metric):
'''
Call this function in self.eval() to collect evaluation metric to Pipeline.
The added metric will be used to:
1. log to terminal
2. log to tensorboard
'''
self.logger.add_metric(name, metric)
def _load_default_pipe_cfg(self):
# ============================Pipeline config============================
PIPELINE = edict()
# data config
PIPELINE.DATA = edict()
PIPELINE.DATA.ROOT = ''
PIPELINE.DATA.SCRIPT = 'kitti_object'
PIPELINE.DATA.LOADER = 'kittiObjectDataset'
PIPELINE.DATA.NUM_WORKERS = 1
# model config
PIPELINE.MODEL = edict()
PIPELINE.MODEL.TASK = 'detection'
PIPELINE.MODEL.SCRIPT = ''
PIPELINE.MODEL.NAME = ''
# training config
PIPELINE.TRAIN = edict()
PIPELINE.TRAIN.BATCH_SIZE = 4
PIPELINE.TRAIN.START_EPOCH = 0
PIPELINE.TRAIN.END_EPOCH = 15
PIPELINE.TRAIN.OPTIMIZER = 'adam'
PIPELINE.TRAIN.LEARNING_RATE = 0.00005
PIPELINE.TRAIN.WEIGHT_DECAY = 0.0005
PIPELINE.TRAIN.DOUBLE_BIAS = False
PIPELINE.TRAIN.BIAS_DECAY = False
PIPELINE.TRAIN.MOMENTUM = 0.9
PIPELINE.TRAIN.LR_DECAY_GAMMA = 0.1
PIPELINE.TRAIN.LR_DECAY_EPOCH = 10
PIPELINE.TRAIN.CLIP_GRAD = -1
PIPELINE.TRAIN.PRETRAINED = False
PIPELINE.TRAIN.PRETRAINED_WEIGHT = ''
PIPELINE.TRAIN.RESUME = False
PIPELINE.TRAIN.RESUME_EPOCH = 0
PIPELINE.TRAIN.FINE_TUNE = False
PIPELINE.TRAIN.FINE_TUNE_STRICT = False
PIPELINE.TRAIN.FINE_TUNE_MODEL = ''
PIPELINE.TRAIN.FINE_TUNE_STATE_DICT = True
PIPELINE.TRAIN.SNAPSHOT_INTERVAL = 10000
PIPELINE.TRAIN.RESULTS_ROOT = 'results'
PIPELINE.TRAIN.SNAPSHOT_PREFIX = 'tinyyolo'
PIPELINE.TRAIN.EVAL_INTERVAL = -1
PIPELINE.TRAIN.DISP_INTERVAL = 200
PIPELINE.TRAIN.TB_FLITER = ''
PIPELINE.TRAIN.TB_LOG_PARAM_HIST = False
# test config
PIPELINE.TEST = edict()
PIPELINE.TEST.BATCH_SIZE = 1
PIPELINE.TEST.EVAL_SCRIPT = 'eval.evaluate'
PIPELINE.TEST.EVAL_FUNCTION = 'evaluate'
PIPELINE.TEST.WRITE_CACHE = True
PIPELINE.TEST.EVAL_USE_CACHE = False
PIPELINE.TEST.TEST_EPOCH = 15
PIPELINE.TEST.LOAD_STATE_DICT = False
PIPELINE.TEST.VIS = False
# deploy config
PIPELINE.DEPLOY = edict()
PIPELINE.DEPLOY.ONNX2NCNN = '/home/cj/repos/ncnn/build/tools/onnx/onnx2ncnn'
return PIPELINE
def _load_default_cfg(self):
CONFIG = edict()
CONFIG.PIPELINE = self._load_default_pipe_cfg()
CONFIG.MODEL = self.load_default_model_cfg()
return CONFIG
def _load_user_cfg(self, default_cfg, cfg_file):
def __override_default_cfg(user_cfg, default_cfg):
"""
Override default config by user config if user config exists.
"""
if type(user_cfg) is not edict:
return
for key, value in user_cfg.items():
# item in user_cfg must in default_cfg
if key not in default_cfg:
raise KeyError('{} is not user_cfg valid config key'.format(key))
# the types must match, too
old_type = type(default_cfg[key])
if old_type is not type(value):
if isinstance(default_cfg[key], np.ndarray):
value = np.array(value, dtype=default_cfg[key].dtype)
else:
raise ValueError(('Type mismatch ({} vs. {}) '
'for config key: {}').format(type(default_cfg[key]),
type(value), key))
# recursively override
if type(value) is edict:
try:
__override_default_cfg(user_cfg[key], default_cfg[key])
except:
print(('Error under config key: {}'.format(k)))
raise
else:
default_cfg[key] = value
import yaml
with open(cfg_file, 'r') as f:
# Use safe_load instead of load to avoid unnecessary warning
yaml_cfg = edict(yaml.safe_load(f))
__override_default_cfg(yaml_cfg, default_cfg)
return default_cfg # overrided
def _load_cfg(self, cfg_file):
default_cfg = self._load_default_cfg()
final_cfg = self._load_user_cfg(default_cfg, cfg_file)
return final_cfg
def _set_device(self, use_cuda):
device_dict = {}
if use_cuda:
cuda_visible_devices = os.environ['CUDA_VISIBLE_DEVICES']
gpu_list = cuda_visible_devices.split(',')
visible_num_gpus = len(gpu_list)
device_dict['visible_num_gpus'] = visible_num_gpus
print('Use GPU devices')
print('Available GPU stats:')
print('number: {} ids: {}'.format(visible_num_gpus, cuda_visible_devices))
assert torch.cuda.is_available(), 'There is no gpu device available, try cpu.'
device = torch.device('cuda')
else:
print('Use CPU device')
device = torch.device('cpu')
device_dict['device'] = device
return device_dict
def _load_data(self):
exec('from dataset.' + self.pipe_cfg.DATA.SCRIPT + ' import ' + self.pipe_cfg.DATA.LOADER)
if self.mode == 'train':
train_dataset = eval(self.pipe_cfg.DATA.LOADER)(
os.path.join(os.path.dirname(__file__), 'data', self.pipe_cfg.DATA.ROOT), train=True)
collate_fn = getattr(train_dataset, 'collate_fn', None)
# todo delete this if after update pytorch?
if collate_fn is not None:
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=self.train_batch_size,
shuffle=True,
num_workers=self.pipe_cfg.DATA.NUM_WORKERS,
collate_fn=collate_fn)
else:
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=self.train_batch_size,
shuffle=True,
num_workers=self.pipe_cfg.DATA.NUM_WORKERS)
else:
train_data_loader = None
test_dataset = eval(self.pipe_cfg.DATA.LOADER)(
os.path.join(os.path.dirname(__file__), 'data', self.pipe_cfg.DATA.ROOT), train=False)
collate_fn = getattr(test_dataset, 'collate_fn', None)
# todo delete this if after update pytorch?
if collate_fn is not None:
test_data_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=self.test_batch_size,
shuffle=False,
num_workers=self.pipe_cfg.DATA.NUM_WORKERS,
collate_fn=collate_fn)
else:
test_data_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=self.test_batch_size,
shuffle=False,
num_workers=self.pipe_cfg.DATA.NUM_WORKERS)
return train_data_loader, test_data_loader
def _load_model(self):
exec('from model.' + self.pipe_cfg.MODEL.TASK + '.' + self.pipe_cfg.MODEL.SCRIPT \
+ ' import ' + self.pipe_cfg.MODEL.NAME)
model_cfg = self.cfg.MODEL
model = eval(self.pipe_cfg.MODEL.NAME)(model_cfg)
model = model.to(self.device_settings['device'])
return model_cfg, model
def _load_optimizer(self):
LR = self.pipe_cfg.TRAIN.LEARNING_RATE
WEIGHT_DECAY = self.pipe_cfg.TRAIN.WEIGHT_DECAY
DOUBLE_BIAS = self.pipe_cfg.TRAIN.DOUBLE_BIAS
BIAS_DECAY = self.pipe_cfg.TRAIN.BIAS_DECAY
params = []
for key, value in dict(self.model.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
lr = LR * (2 if DOUBLE_BIAS else 1)
weight_decay = WEIGHT_DECAY if BIAS_DECAY else 0
else:
lr = LR
weight_decay = WEIGHT_DECAY
params += [{'params': [value], 'lr': lr, 'weight_decay': weight_decay}]
if self.pipe_cfg.TRAIN.OPTIMIZER == "adam":
optimizer = torch.optim.Adam(params)
elif self.pipe_cfg.TRAIN.OPTIMIZER == "sgd":
optimizer = torch.optim.SGD(params, momentum=self.pipe_cfg.TRAIN.MOMENTUM)
else:
raise Exception('Not supported optimizer, should be sgd or adam')
return optimizer
def _load_weight(self):
SNAPSHOT_DIR = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT, 'snapshots')
if self.mode == 'train':
if not os.path.isdir(SNAPSHOT_DIR):
os.makedirs(SNAPSHOT_DIR)
if self.pipe_cfg.TRAIN.RESUME:
self.pipe_cfg.TRAIN.FINE_TUNE = False
print('Resuming training stats, fine_tune will be disabled')
load_name = os.path.join(SNAPSHOT_DIR, self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX) + \
'_{}.pth'.format(self.pipe_cfg.TRAIN.RESUME_EPOCH)
print("Resuming checkpoint {}".format(load_name))
checkpoint = torch.load(load_name)
self.pipe_cfg.TRAIN.START_EPOCH = checkpoint['epoch']
self.model.load_state_dict(checkpoint['model'], strict=True)
self.optimizer.load_state_dict(checkpoint['optimizer'])
# update init lr if resume
self.pipe_cfg.TRAIN.LEARNING_RATE = self.optimizer.param_groups[0]['lr']
print("loaded checkpoint {}".format(load_name))
else:
assert self.pipe_cfg.TRAIN.START_EPOCH == 0, \
'epoch should start from 0 if not resume'
if self.pipe_cfg.TRAIN.FINE_TUNE:
print("Finetuning checkpoint from {}".format(self.pipe_cfg.TRAIN.FINE_TUNE_MODEL))
if self.pipe_cfg.TRAIN.FINE_TUNE_STATE_DICT:
ft_checkpoint = torch.load(self.pipe_cfg.TRAIN.FINE_TUNE_MODEL)
else:
ft_checkpoint = torch.load(self.pipe_cfg.TRAIN.FINE_TUNE_MODEL)['model']
self.model.load_state_dict(ft_checkpoint,
strict=self.pipe_cfg.TRAIN.FINE_TUNE_STRICT)
elif self.mode == 'test' or 'deploy':
load_name = os.path.join(SNAPSHOT_DIR, self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX) + '_{}.pth'\
.format(self.pipe_cfg.TEST.TEST_EPOCH)
print("load checkpoint {} for {}".format(load_name, self.mode))
checkpoint = torch.load(load_name)
if self.pipe_cfg.TEST.LOAD_STATE_DICT:
self.model.load_state_dict(checkpoint)
else:
self.model.load_state_dict(checkpoint['model'])
print('load model successfully!')
else:
print('WARNING: load weight in {} mode is not implemented!'.format(self.mode))
def _set_parallel(self):
if 'visible_num_gpus' in self.device_settings \
and self.device_settings['visible_num_gpus'] > 1:
self.model = torch.nn.DataParallel(self.model)
def _save_ckpt(self, save_name, model, optimizer, epoch, step=None):
if isinstance(model, torch.nn.DataParallel):
model = model.mudule
torch.save({
'epoch': epoch + 1,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}, save_name)
if step is not None:
print('Save model: {} in epoch {} step {}'.format(save_name, epoch + 1, step))
else:
print('Save model: {} in epoch {} last step'.format(save_name, epoch + 1))
def _clip_gradient(self, model, clip_norm):
'''
Computes a gradient clipping coefficient based on gradient norm.
'''
total_norm = 0
for p in model.parameters():
if p.requires_grad:
module_norm = p.grad.data.norm()
total_norm += module_norm ** 2
total_norm = np.sqrt(total_norm)
norm = clip_norm / max(total_norm, clip_norm)
for p in model.parameters():
if p.requires_grad:
p.grad.mul_(norm)
def _adjust_lr(self, epoch):
if epoch % (self.pipe_cfg.TRAIN.LR_DECAY_EPOCH + 1) == 0 and epoch > 0:
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.pipe_cfg.TRAIN.LR_DECAY_GAMMA * param_group['lr']
self.lr = self.pipe_cfg.TRAIN.LR_DECAY_GAMMA * self.lr
def _prepare_model_input(self, data):
'''
Prepare model input from cpu data to device data, data is directly from data loader,
it contains (inputs, targets), inputs or targets can be a tensor or a list/tuple of tensors
'''
inputs, targets = data
if isinstance(inputs, (tuple, list)):
inputs = [input_.to(self.device) for input_ in inputs]
else:
inputs = inputs.to(self.device)
return inputs
def _run_step_train(self, data):
self.logger.tic()
inputs = self._prepare_model_input(data)
self.model.zero_grad()
output_list = self.model(inputs)
self.loss(data, output_list)
loss = self.logger.total_loss()
self.optimizer.zero_grad()
# todo shouldn't it run after backward ? and crash
if self.pipe_cfg.TRAIN.CLIP_GRAD != -1:
self._clip_gradient(self.model, self.pipe_cfg.TRAIN.CLIP_GRAD)
loss.backward()
self.optimizer.step()
self.logger.toc()
def _run_epoch_train(self, epoch, num_steps_per_epoch, num_steps):
self._adjust_lr(epoch)
data_iter = iter(self.train_data_loader)
for step in range(num_steps_per_epoch):
data = next(data_iter)
self._run_step_train(data)
self.global_step += 1
# Log if global step reach DISP_INTERVAL
if self.global_step % self.pipe_cfg.TRAIN.DISP_INTERVAL == 0:
self.logger.log_train(
epoch,
self.global_step,
self.lr,
num_steps,
step,
num_steps_per_epoch,
self.model.state_dict().items())
# Save shapshot if every time that step reach SHAPSHOT_INTERVAL
if step > 0 and step % self.pipe_cfg.TRAIN.SNAPSHOT_INTERVAL == 0:
SNAPSHOT_DIR = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT, 'snapshots')
save_name = os.path.join(SNAPSHOT_DIR, self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX) + \
'_{}_{}.pth'.format(epoch + 1, step)
self._save_ckpt(save_name, self.model, self.optimizer, epoch, step=step)
# Save snapshot every epoch
SNAPSHOT_DIR = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT, 'snapshots')
save_name = os.path.join(SNAPSHOT_DIR, self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX) + \
'_{}.pth'.format(epoch + 1)
self._save_ckpt(save_name, self.model, self.optimizer, epoch)
# todo set fix param and print fixed param
def _run_train(self):
start_epoch = self.pipe_cfg.TRAIN.START_EPOCH
end_epoch = self.pipe_cfg.TRAIN.END_EPOCH
batch_size = self.train_batch_size
print('Epoch: start in {} end in {}'.format(start_epoch, end_epoch))
num_epochs = end_epoch - 0 + 1 # Start from epoch 0
num_steps_per_epoch = len(self.train_data_loader)
num_steps = num_steps_per_epoch * num_epochs
print('num_steps: {:d} batch_size: {} num_steps_per_epoch: {}'.format(
int(num_steps), batch_size, num_steps_per_epoch))
self.global_step = start_epoch * num_steps_per_epoch
self.lr = self.pipe_cfg.TRAIN.LEARNING_RATE
start_train_time = time.time()
self.model.train() # set to train model, will affect bn stats and dropout
for epoch in range(start_epoch, end_epoch):
start = time.time()
self._run_epoch_train(epoch, num_steps_per_epoch, num_steps)
end = time.time()
print('Elapsed time for this epoch: {:.2f}s'.format(end - start))
if self.pipe_cfg.TRAIN.EVAL_INTERVAL > 0 and \
(epoch + 1) % self.pipe_cfg.TRAIN.EVAL_INTERVAL == 0:
self._run_test()
self.model.train()
end_train_time = time.time()
hours, remainder = divmod((end_train_time-start_train_time), 3600)
minutes, seconds = divmod(remainder, 60)
print('Training cost: {:d}h{:d}m{:d}s'.format(int(hours), int(minutes), int(seconds)))
print('\t end at: {}\n\n'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
self._run_deploy()
def _run_test(self):
EVAL_RESULTS_DIR = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT, 'eval')
if not os.path.isdir(EVAL_RESULTS_DIR):
os.makedirs(EVAL_RESULTS_DIR)
TEST_CACHE_FILE = os.path.join(EVAL_RESULTS_DIR, 'test_cache.pkl')
batch_size = self.test_batch_size
assert batch_size == 1, 'test batch must be 1.'
num_data = len(self.test_data_loader)
print('Test: data number total {}'.format(num_data))
start_train_time = time.time()
EVAL_USE_CACHE = self.pipe_cfg.TEST.EVAL_USE_CACHE
if not os.path.exists(TEST_CACHE_FILE):
print('No test cache file found, evaluate will use new test results.')
EVAL_USE_CACHE = False
if self.mode == 'train':
print('In train mode, evaluate will use new test results.')
EVAL_USE_CACHE = False
self._eval_table.clear()
if EVAL_USE_CACHE:
print('Evaluate with test cache:')
with open(TEST_CACHE_FILE, 'rb') as f:
self._eval_table = pickle.load(f)
else:
self.model.eval() # set to train model, will affect bn stats and dropout
data_iter = iter(self.test_data_loader)
for i in range(num_data):
data_tic = time.time()
data = next(data_iter)
data_toc = time.time()
pre_tic = time.time()
inputs = self._prepare_model_input(data)
pre_toc = time.time()
net_tic = time.time()
with torch.no_grad():
output_list = self.model(inputs)
net_toc = time.time()
post_tic = time.time()
self.eval_step(data, output_list)
post_toc = time.time()
data_time = data_toc - data_tic
pre_time = pre_toc - pre_tic
net_time = net_toc - net_tic
post_time = post_toc - post_tic
sys.stdout.write(
'Test: {:d}/{:d} data:{:.3f}s pre:{:.3f}s net:{:.3f}s post:{:.3f}s\r'.format(
i + 1, num_data, data_time, pre_time, net_time, post_time))
sys.stdout.flush()
if self.pipe_cfg.TEST.WRITE_CACHE and self.mode != 'train':
with open(os.path.join(EVAL_RESULTS_DIR, 'test_cache.pkl'), 'wb') as f:
pickle.dump(self._eval_table, f, pickle.HIGHEST_PROTOCOL)
self.eval()
self.logger.log_test(self.global_step, log_to_tensorboard=(self.model == 'train'))
end_train_time = time.time()
hours, remainder = divmod((end_train_time - start_train_time), 3600)
minutes, seconds = divmod(remainder, 60)
print('Test cost: {:d}h{:d}m{:d}s'.format(int(hours), int(minutes), int(seconds)))
print('\t end at: {}\n\n'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
def _run_deploy(self):
# Save onnx model
onnx_file = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT,
'{}.onnx'.format(self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX))
data_iter = iter(self.test_data_loader)
data = next(data_iter)
inputs = self._prepare_model_input(data)
torch.onnx.export(self.model, inputs, onnx_file, export_params=True)
print('Onnx saved to {}, you can view the network structure at https://netron.app'
.format(onnx_file))
# Print onnx graph
onnx_model = None
try:
import onnx
onnx_model = onnx.load(onnx_file)
print("Onnx graph: \nop_type, input_names, output_names")
for node in onnx_model.graph.node:
print(node.op_type, node.input, node.output)
except:
print('WARNING: Failed to import onnx! can not print the graph node and can not '
'generate deploy model.json automatically, you can refer to '
'deploy/models/mnist/mnist.json to write it yourself, the input name and output '
'name can be get by https://netron.app')
# Convert onnx model to deploy model
if os.path.exists(self.pipe_cfg.DEPLOY.ONNX2NCNN):
self._convert_deploy_model(onnx_file, inputs.shape[1:], onnx_model)
else:
print('Can not find onnx2ncnn tool, skip convert.'
'You can set the tool binary path to by PIPELINE.DEPLOY.ONNX2NCNN.')
def _convert_deploy_model(self, onnx_file, input_shape, onnx_model=None):
deploy_dir = os.path.join(self.pipe_cfg.TRAIN.RESULTS_ROOT, 'deploy')
if not os.path.isdir(deploy_dir):
os.makedirs(deploy_dir)
ncnn_param_file = os.path.join(deploy_dir,
'{}.param'.format(self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX))
ncnn_bin_file = os.path.join(deploy_dir,
'{}.bin'.format(self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX))
cmd = '{} {} {} {}'.format(
self.pipe_cfg.DEPLOY.ONNX2NCNN, onnx_file, ncnn_param_file, ncnn_bin_file)
os.system(cmd)
print('Convert onnx model to deploy(ncnn) model, deploy model saved to {} {}'.format(
ncnn_param_file, ncnn_bin_file))
if onnx_model is not None:
deploy_json_file = os.path.join(deploy_dir,
'{}.json'.format(self.pipe_cfg.TRAIN.SNAPSHOT_PREFIX))
model_json = \
[
{
"type": "operator",
"name": "BackBone",
"inputs":
[
{
"name": onnx_model.graph.node[0].input[0],
"shape": [input_shape[1], input_shape[2], input_shape[0]]
}
],
"outputs": [onnx_model.graph.node[-1].output[0]]
},
{
"type": "plugin",
"name": "PostProcess"
}
]
with open(deploy_json_file, 'w') as f:
json.dump(model_json, f, indent=4)
print('Generate deploy json file, saved to {}'.format(deploy_json_file))
def _parse_args():
parser = argparse.ArgumentParser(description='Deeplearning train test deploy pipeline')
parser.add_argument('--cfg', help='config file', type=str)
parser.add_argument('--mode', help='train test or deploy mode', type=str)
parser.add_argument('--cuda', help='whether use CUDA', action='store_true')
args = parser.parse_args()
return args
def _add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
args = _parse_args()
if __name__ == '__main__':
_add_path(os.path.dirname(__file__))
Pipeline(cfg_file=args.cfg, mode=args.mode, use_cuda=args.cuda)
# Test code
# Pipeline(cfg_file='yml.cfg', mode='train', use_cuda=False)