-
Notifications
You must be signed in to change notification settings - Fork 49
/
utils.py
56 lines (50 loc) · 2.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
@Author: Liushu
@Date: 2023/04/30
"""
import re
import torch
from sentence_transformers import util
from prompt import embedder, corpus_embeddings, table_schema, corpus, In_context_prompt
# 检索问句答案可能存在表结构
def retrieval_related_table(input_prompt, input, history=None, top_k=3, is_moss=False):
query_embedding = embedder.encode(input, convert_to_tensor=True) # 与6张表的表名和输入的问题进行相似度计算
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k) # 拿到topk=3的表名
# 组合Prompt
table_nums = 0
for score, idx in zip(top_results[0], top_results[1]):
# 阈值过滤
if score > 0.45:
table_nums += 1
input_prompt += table_schema[corpus[idx]]
input_prompt += "上下文结束\n"
# In-Context Learning
if is_moss:
In_context_prompt = In_context_prompt.replace("问: ", "<|Human|>: ").replace("答:", "<eoh>")
if table_nums >= 2 and not history: # 如果表名大于等于2个,且没有历史记录,就加上In-Context Learning
input_prompt += In_context_prompt
return input_prompt
def obtain_sql(response):
response = re.split("```|\n\n", response)
for text in response:
if "SELECT" in text:
response = text
break
else:
response = response[0]
response = response.replace("\n", " ").replace("``", "").replace("`", "").strip()
response = re.sub(' +',' ', response)
return response
def execute_sql(response, chatbot, dboperate):
if "SELECT" in response:
try:
sql_stauts = "sql语句执行成功,结果如下:"
sql_result = dboperate.query_data(response)
sql_result = str(sql_result)
except Exception as e:
sql_stauts = "sql语句执行失败"
sql_result = str(e)
chatbot[-1] = (chatbot[-1][0],
chatbot[-1][1] + "\n\n"+ "===================="+"\n\n" + sql_stauts + "\n\n" + sql_result)
return chatbot