You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
struct mountpoint has an odd kinda-sorta refcount in it. It's always
either equal to or one above the number of mounts attached to that
mountpoint.
"One above" happens when a function takes a temporary reference to
mountpoint. Things get simpler if we express that as inserting
a local object into ->m_list and removing it to drop the reference.
New calling conventions:
1) lock_mount(), do_lock_mount(), get_mountpoint() and lookup_mountpoint()
take an extra struct pinned_mountpoint * argument and returns 0/-E...
(or true/false in case of lookup_mountpoint()) instead of returning
struct mountpoint pointers. In case of success, the struct mountpoint *
we used to get can be found as pinned_mountpoint.mp
2) unlock_mount() (always paired with lock_mount()/do_lock_mount()) takes
an address of struct pinned_mountpoint - the same that had been passed to
lock_mount()/do_lock_mount().
3) put_mountpoint() for a temporary reference (paired with get_mountpoint()
or lookup_mountpoint()) is replaced with unpin_mountpoint(), which takes
the address of pinned_mountpoint we passed to matching {get,lookup}_mountpoint().
4) all instances of pinned_mountpoint are local variables; they always live on
stack. {} is used for initializer, after successful {get,lookup}_mountpoint()
we must make sure to call unpin_mountpoint() before leaving the scope and
after successful {do_,}lock_mount() we must make sure to call unlock_mount()
before leaving the scope.
5) all manipulations of ->m_count are gone, along with ->m_count itself.
struct mountpoint lives while its ->m_list is non-empty.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
0 commit comments