-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
''' | ||
Modified from https://github.com/pytorch/vision.git | ||
''' | ||
import math | ||
|
||
import torch.nn as nn | ||
from .base import PyTorchModel | ||
|
||
__all__ = [ | ||
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', | ||
'vgg19_bn', 'vgg19', | ||
] | ||
|
||
|
||
class VGG(nn.Module, PyTorchModel): | ||
''' | ||
VGG model | ||
''' | ||
|
||
def __init__(self, features): | ||
super(VGG, self).__init__() | ||
self.features = features | ||
self.classifier = nn.Sequential( | ||
nn.Dropout(), | ||
nn.Linear(512, 512), | ||
nn.ReLU(True), | ||
nn.Dropout(), | ||
nn.Linear(512, 512), | ||
nn.ReLU(True), | ||
nn.Linear(512, 10), | ||
) | ||
# Initialize weights | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
m.bias.data.zero_() | ||
|
||
self.criterion = nn.CrossEntropyLoss() | ||
|
||
def forward(self, x): | ||
x = self.features(x) | ||
x = x.view(x.size(0), -1) | ||
x = self.classifier(x) | ||
return x | ||
|
||
|
||
def make_layers(cfg, batch_norm=False): | ||
layers = [] | ||
in_channels = 3 | ||
for v in cfg: | ||
if v == 'M': | ||
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] | ||
else: | ||
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) | ||
if batch_norm: | ||
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] | ||
else: | ||
layers += [conv2d, nn.ReLU(inplace=True)] | ||
in_channels = v | ||
return nn.Sequential(*layers) | ||
|
||
|
||
cfg = { | ||
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | ||
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | ||
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], | ||
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', | ||
512, 512, 512, 512, 'M'], | ||
} | ||
|
||
|
||
def vgg11(): | ||
"""VGG 11-layer model (configuration "A")""" | ||
return VGG(make_layers(cfg['A'])) | ||
|
||
|
||
def vgg11_bn(): | ||
"""VGG 11-layer model (configuration "A") with batch normalization""" | ||
return VGG(make_layers(cfg['A'], batch_norm=True)) | ||
|
||
|
||
def vgg13(): | ||
"""VGG 13-layer model (configuration "B")""" | ||
return VGG(make_layers(cfg['B'])) | ||
|
||
|
||
def vgg13_bn(): | ||
"""VGG 13-layer model (configuration "B") with batch normalization""" | ||
return VGG(make_layers(cfg['B'], batch_norm=True)) | ||
|
||
|
||
def vgg16(): | ||
"""VGG 16-layer model (configuration "D")""" | ||
return VGG(make_layers(cfg['D'])) | ||
|
||
|
||
def vgg16_bn(): | ||
"""VGG 16-layer model (configuration "D") with batch normalization""" | ||
return VGG(make_layers(cfg['D'], batch_norm=True)) | ||
|
||
|
||
def vgg19(): | ||
"""VGG 19-layer model (configuration "E")""" | ||
return VGG(make_layers(cfg['E'])) | ||
|
||
|
||
def vgg19_bn(): | ||
"""VGG 19-layer model (configuration 'E') with batch normalization""" | ||
return VGG(make_layers(cfg['E'], batch_norm=True)) |