-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_node_classification.py
150 lines (126 loc) · 5.73 KB
/
main_node_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import time
import glob
import argparse
import torch
import torch.nn.functional as F
from models import NodeClassificationModel
from torch_geometric.datasets import Coauthor, Planetoid
from utils import index_to_mask, random_splits
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=777, help='random seed')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=0.01, help='weight decay')
parser.add_argument('--nhid', type=int, default=64, help='hidden size')
parser.add_argument('--depth', type=int, default=4, help='number of encoder layers')
parser.add_argument('--sample_neighbor', type=bool, default=True, help='whether sample neighbors within h-hops')
parser.add_argument('--sparse_attention', type=bool, default=True, help='whether use sparse attention')
parser.add_argument('--structure_learning', type=bool, default=True, help='whether perform structure learning')
parser.add_argument('--hop_connection', type=bool, default=False, help='whether directly connect node within h-hops')
parser.add_argument('--hop', type=int, default=2, help='h-hops')
parser.add_argument('--lamb', type=float, default=0.0, help='trade-off parameter')
parser.add_argument('--dataset', type=str, default='CS', help='Cora/Citeseer/Pubmed/Physics')
parser.add_argument('--device', type=str, default='cuda:0', help='specify cuda devices')
parser.add_argument('--epochs', type=int, default=200, help='maximum number of epochs')
parser.add_argument('--pool1', type=float, default=0.05, help='pool1 parameter')
parser.add_argument('--pool2', type=float, default=0.5, help='pool2 parameter')
parser.add_argument('--pool3', type=float, default=0.5, help='pool3 parameter')
parser.add_argument('--pool4', type=float, default=0.5, help='pool4 parameter')
parser.add_argument('--pool5', type=float, default=0.8, help='pool5 parameter')
args = parser.parse_args()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
if args.dataset == 'Physics' or args.dataset == 'CS':
dataset = Coauthor(os.path.join('data', args.dataset), args.dataset)
data = dataset.data
data = random_splits(data, dataset.num_classes)
else:
dataset = Planetoid(os.path.join('data', args.dataset), args.dataset)
data = dataset.data
args.num_nodes = data.x.size(0)
args.num_features = data.x.size(1)
args.num_classes = dataset.num_classes
print(args)
model = NodeClassificationModel(args).to(args.device)
data = data.to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
def train():
best_test_acc = 0
val_acc_values = []
val_loss_values = []
best_epoch = 0
min_loss = 1e10
t = time.time()
for epoch in range(args.epochs):
loss_train = 0.0
model.train()
optimizer.zero_grad()
out = model(data.x, data.edge_index)
out = F.log_softmax(out, dim=1)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
loss_train += loss.item()
pred = out[data.train_mask].max(dim=1)[1]
correct = pred.eq(data.y[data.train_mask]).sum().item()
acc_train = correct / data.train_mask.sum().item()
acc_val, loss_val = compute_test(data.val_mask)
acc_test, loss_test = compute_test(data.test_mask)
if acc_test > best_test_acc:
best_test_acc = acc_test
print('Epoch: {:04d}'.format(epoch + 1), 'loss_train: {:.4f}'.format(loss_train),
'acc_train: {:.4f}'.format(acc_train), 'loss_val: {:.4f}'.format(loss_val),
'acc_val: {:.4f}'.format(acc_val), 'acc_test: {:.4f}'.format(best_test_acc),
'time: {:.4f}s'.format(time.time() - t))
val_acc_values.append(acc_val)
val_loss_values.append(loss_val)
torch.save(model.state_dict(), '{}.pth'.format(epoch))
if val_loss_values[-1] < min_loss:
min_loss = val_loss_values[-1]
best_epoch = epoch
files = glob.glob('*.pth')
for f in files:
epoch_nb = int(f.split('.')[0])
if epoch_nb < best_epoch:
os.remove(f)
files = glob.glob('*.pth')
for f in files:
epoch_nb = int(f.split('.')[0])
if epoch_nb > best_epoch:
os.remove(f)
print('Optimization Finished! Total time elapsed: {:.4f}'.format(time.time() - t))
return best_epoch
def compute_test(mask):
model.eval()
with torch.no_grad():
correct = 0.0
loss_test = 0.0
out = model(data.x, data.edge_index)
out = F.log_softmax(out, dim=1)
pred = out[mask].max(dim=1)[1]
correct += pred.eq(data.y[mask]).sum().item()
loss_test += F.nll_loss(out[mask], data.y[mask]).item()
return correct / mask.sum().item(), loss_test
def save_embedding(inputfile):
model.eval()
f = open(inputfile, 'w')
with torch.no_grad():
embeddings = model.gen_embedding(data.x, data.edge_index)
embeddings = embeddings.cpu().detach().numpy()
gt = data.y.cpu().detach().numpy()
num_nodes, num_dims = embeddings.shape
for i in range(num_nodes):
write_string = str(gt[i])
for j in range(num_dims):
write_string += ' ' + str(embeddings[i, j])
write_string += '\n'
f.writelines(write_string)
f.close()
if __name__ == '__main__':
# Model training
best_model = train()
# Restore best model for test set
model.load_state_dict(torch.load('{}.pth'.format(best_model)))
test_acc, test_loss = compute_test(data.test_mask)
print('Test set results, loss = {:.4f}, accuracy = {:.4f}'.format(test_loss, test_acc))