-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspectrum.c
227 lines (190 loc) · 7.41 KB
/
spectrum.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/**
* GJay, copyright (c) 2002 Chuck Groom. Most of this file -- all the
* algorithm bits -- come from spectromatic, copyright (C) 1997-2002
* Daniel Franklin.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 1, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <stdio.h>
#include <malloc.h>
#include <png.h>
#include <string.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_real.h>
#include <gsl/gsl_fft_halfcomplex.h>
#include <assert.h>
#include "analysis.h"
typedef unsigned long ulongT;
typedef unsigned short ushortT;
int read_header (FILE *f, waveheaderstruct *header);
int read_frames (FILE *f, waveheaderstruct *header,
int start, int length, char *data);
static char * read_buffer;
static int read_buffer_size;
static long read_buffer_start;
static long read_buffer_end; /* same as file position */
static int window_size = 1024;
static int step_size = 256;
int spectrum (FILE * wav_file, long fsize, gdouble * results) {
waveheaderstruct header;
char *data;
double *ch1 = NULL, *ch2 = NULL, *mags = NULL;
int i, j, k, bin, percent = 0, old_percent = 0;
double ch1max = 0, ch2max = 0;
double *total_mags;
double sum;
if (!wav_file) {
fprintf (stderr, "Error - file not open for reading\n");
exit (-1);
}
read_buffer_size = sizeof (waveheaderstruct) + window_size*4;
read_buffer = malloc(read_buffer_size);
fread (read_buffer, 1, read_buffer_size, wav_file);
read_buffer_start = 0;
read_buffer_end = read_buffer_size;
memcpy(&header, read_buffer, sizeof (waveheaderstruct));
header.data_length = fsize;
if (header.modus != 1 && header.modus != 2) {
fprintf (stderr, "Error: not a wav file...\n");
exit (-1);
}
if (header.byte_p_spl / header.modus != 2) {
fprintf (stderr, "Error: not 16-bit...\n");
exit (-1);
}
data = (char*) malloc (window_size * header.byte_p_spl);
mags = (double*) malloc (window_size / 2 * sizeof (double));
total_mags = (double*) malloc (window_size / 2 * sizeof (double));
memset (total_mags, 0x00, window_size / 2 * sizeof (double));
memset (results, 0x00, NUM_FREQ_SAMPLES * sizeof(double));
ch1 = (double*) malloc (window_size * sizeof (double));
if (header.modus == 2)
ch2 = (double*) malloc (window_size * sizeof (double));
for (i = -window_size; i < window_size + (int)(header.data_length / header.byte_p_spl); i += step_size) {
percent = ((i + window_size)*100)/(window_size*2 + (int)(header.data_length / header.byte_p_spl));
if (old_percent != percent) {
pthread_mutex_lock(&analyze_data_mutex);
analyze_percent = percent;
pthread_mutex_unlock(&analyze_data_mutex);
old_percent = percent;
}
read_frames (wav_file, &header, i, window_size, data);
if (header.modus == 1) {
for (j = 0; j < window_size; j++)
ch1 [j] = data [j << 1] + (data [(j << 1) + 1] << 8);
} else {
for (j = 0; j < window_size; j++) {
ch1 [j] = data [j << 2] + (data [(j << 2) + 1] << 8);
ch2 [j] = data [(j << 2) + 2] + (data [(j << 2) + 3] << 8);
}
gsl_fft_real_radix2_transform (ch2, 1, window_size);
}
gsl_fft_real_radix2_transform (ch1, 1, window_size);
mags [0] = fabs (ch1 [0]);
for (j = 0; j < window_size / 2; j++) {
mags [j] = sqrt (ch1 [j] * ch1 [j] + ch1 [window_size - j] * ch1 [window_size - j]);
if (mags [j] > ch1max)
ch1max = mags [j];
}
/* Add magnitudes */
for (k = 0; k < window_size / 2; k++)
total_mags[k] += mags[k];
if (header.modus == 2) {
mags [0] = fabs (ch2 [0]);
for (j = 0; j < window_size / 2; j++) {
mags [j] = sqrt (ch2 [j] * ch2 [j] + ch2 [window_size - j] * ch2 [window_size - j]);
if (mags [j] > ch2max)
ch2max = mags [j];
}
/* Add magnitudes */
for (k = 0; k < window_size / 2; k++)
total_mags[k] += mags[k];
}
}
sum = 0;
for (k = 0; k < window_size / 2; k++)
sum += total_mags[k];
for (k = 0; k < window_size / 2; k++)
total_mags[k] = total_mags[k]/sum;
for (k = 0; k < window_size / 2; k++) {
bin = (k * NUM_FREQ_SAMPLES) / (window_size / 2);
results[bin] += total_mags[k];
}
free (data);
free (mags);
free (total_mags);
free (read_buffer);
return 0;
}
int read_frames (FILE *f,
waveheaderstruct *header,
int start,
int length,
char *data)
{
int realstart = start;
int reallength = length;
int offset = 0;
int seek, len;
if (start + length < 0 || start > (int)(header->data_length / header->byte_p_spl)) {
memset (data, 0, length * header->byte_p_spl);
return 0;
}
if (start < 0) {
offset = -start;
memset (data, 0, offset * header->byte_p_spl);
realstart = 0;
reallength += start;
}
if (start + length > (int)(header->data_length / header->byte_p_spl)) {
reallength -= start + length - (header->data_length / header->byte_p_spl);
memset (data, 0, reallength * header->byte_p_spl);
}
seek = sizeof (waveheaderstruct) + ((realstart + offset) * header->byte_p_spl);
len = header->byte_p_spl * reallength;
if (seek + len <= read_buffer_size) {
memcpy(data + offset * header->byte_p_spl,
read_buffer + seek,
header->byte_p_spl * reallength);
} else {
if (seek + len > read_buffer_end) {
char * new_buffer = malloc(read_buffer_size);
int shift = seek + len - read_buffer_end;
memcpy(new_buffer,
read_buffer + shift,
read_buffer_size - shift);
free(read_buffer);
read_buffer = new_buffer;
fread(read_buffer + read_buffer_size - shift,
1,
shift,
f);
read_buffer_start += shift;
read_buffer_end += shift;
}
memcpy(data + offset * header->byte_p_spl,
read_buffer + seek - read_buffer_start,
header->byte_p_spl * reallength);
}
return 1;
}
/* The 'ideal' song intensity follows the equation .4/((n +
1)^1.4), where n is the freqency bucket. I got this by just
fitting a curve to a lot of normalized frequency graphs. */
gdouble ideal_freq(int i) {
return (.4 / pow(1 + i, 1.4));
}