Theorems of Wilson, Euler, and Fermat Wilson's Theorem A positive integer $$n > 1$$is a prime if and only if: $$ (n-1)! \equiv -1 \mod n $$ Euler's Theorem Let $$n \in \mathbb{Z}^{+}$$ and $$a \in \mathbb{Z}$$ s.t. $$gcd(a, n) = 1$$, then: $$ a^{\phi(n)} \equiv 1 \mod n $$ Fermat's Little Theorem Let $$p$$be a prime and $$a \in \mathbb{Z}$$, then: $$ a^p \equiv a \mod p $$ or equivalently: $$ a^{p-1} \equiv 1 \mod p $$ Reference Wilson's Theorem - Brilliant Euler's Theorem - Brilliant Fermat's Little Theorem - Brilliant