-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRelationBinaryDeBruijn.agda
198 lines (160 loc) · 6.51 KB
/
RelationBinaryDeBruijn.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
--TODO {-# OPTIONS --without-K #-}
{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.DeBruijn where
open import Level.NP
open import Data.Nat.NP hiding (_⊔_; _^_)
open import Data.Product.NP
open import Data.Sum.NP
open import Data.List
open import Data.Bool using (if_then_else_)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary
open import Relation.Binary.Simple
open import Relation.Binary.Permutation
open import Relation.Binary.Bijection
open import Relation.Binary.Sum.NP
import Relation.Binary.On.NP as On
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_;_≢_)
open ≡.≡-Reasoning
import Data.Nat.Properties as Nat
-- show that List Bool ≅ ℘(ℕ) ≅ ø (+1|^1) ≅ ø (+k|^k)★
private
infix 2 _⇔_
_⇔_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (R₁ : REL A B ℓ₁) (R₂ : REL A B ℓ₂) → Set _
R₁ ⇔ R₂ = R₁ ⇒ R₂ × R₂ ⇒ R₁
Ext≡→⇔ : ∀ {ℓ a b} {A : Set a} {B : Set b} {_∼₁_ _∼₂_ : REL A B ℓ}
(ext : ∀ {i j} → i ∼₁ j ≡ i ∼₂ j)
→ _∼₁_ ⇔ _∼₂_
Ext≡→⇔ f = (λ x → ≡.subst id f x) , λ x → ≡.subst id (≡.sym f) x
module Data where
data _^¹ {a} (α : Rel ℕ a) : Rel ℕ a where
zero : (α ^¹) 0 0
suc : ∀ {i j}
(αij : α i j )
→ ----------------------
(α ^¹) (suc i) (suc j)
-- Iterated version of _^¹
data _^_ {a} (α : Rel ℕ a) : ℕ → Rel ℕ a where
zero : ∀ {i j}
(αij : α i j )
→ -----------
(α ^ 0) i j
suc : ∀ {i j n}
(αⁿ¹ij : ((α ^¹) ^ n) i j )
→ ----------------
(α ^ suc n) i j
data IdFin : ℕ → Rel ℕ ₀ where
zero : ∀ {n} → IdFin (suc n) 0 0
suc : ∀ {n i j} → IdFin n i j → IdFin (suc n) (suc i) (suc j)
_+ᵢ_ : ∀ {a} → Rel ℕ a → ℕ → Rel ℕ a
_+ᵢ_ _∼_ n i j = (i + n) ∼ (j + n)
infixl 6 _+ᵢ_
_+ᵢ'_ : ∀ {a} → Rel ℕ a → ℕ → Rel ℕ a
_+ᵢ'_ _∼_ n i j = (n + i) ∼ (n + j)
infixl 6 _+ᵢ'_
dispatch-≤ : ∀ (k x : ℕ) → ℕ ⊎ ℕ
dispatch-≤ k x = if ⌊ x ≤? k ⌋ then inj₁ x else inj₂ x
dispatch-< : ∀ (k x : ℕ) → ℕ ⊎ ℕ
dispatch-< = dispatch-≤ ∘ suc
Import : ∀ {a} (k₁ k₂ : ℕ) → Rel ℕ a → Rel ℕ a
Import k₁ k₂ α = (_≡_ ⊎-Rel (α +ᵢ k₂)) on (dispatch-< k₁)
-- Import k₁ k₂ α = (IdFin k₁ ⊎-Rel (α +ᵢ k₂)) on (dispatch-< k₁)
module IdFin-Props where
idFin-≡ : ∀ {k x y} → IdFin k x y → x ≡ y
idFin-≡ zero = ≡.refl
idFin-≡ (suc x) rewrite idFin-≡ x = ≡.refl
module +ᵢ-Props where
+ᵢ-pres-bij : ∀ {a k} {α : Rel ℕ a} → BijectiveREL ℕ ℕ α → BijectiveREL ℕ ℕ (α +ᵢ k)
+ᵢ-pres-bij {a} {k} = On.bijective (λ x → x + k) (cancel-+-right k)
where
cancel-+-right : ∀ {i j} k → i + k ≡ j + k → i ≡ j
cancel-+-right {i} {j} k eq₁
= Nat.cancel-+-left k
(k + i ≡⟨ ℕ°.+-comm k i ⟩ i + k ≡⟨ eq₁ ⟩ j + k ≡⟨ ℕ°.+-comm j k ⟩ k + j ∎)
+ᵢ-0-id : ∀ {a} (α : Rel _ a) {i j} → (α +ᵢ 0) i j ≡ α i j
+ᵢ-0-id α {i} {j} rewrite ℕ°.+-comm i 0 | ℕ°.+-comm j 0 = ≡.refl
+ᵢ-0-id' : ∀ {a} (α : Rel _ a) → (α +ᵢ 0) ⇔ α
+ᵢ-0-id' = Ext≡→⇔ ∘ +ᵢ-0-id
module ImportProps where
Import-pres-bij : ∀ {a k₁ k₂} {α : Rel ℕ a} → BijectiveREL ℕ ℕ α → BijectiveREL ℕ ℕ (Import k₁ k₂ α)
Import-pres-bij {k₁ = k₁} α-bij
= On.bijective (dispatch-< k₁) dispatch-<-k₁-inj
(≡.bijective ⊎-preserve-bijections (+ᵢ-pres-bij α-bij))
where
open +ᵢ-Props
dispatch-<-k₁-inj : ∀ {i j} → dispatch-< k₁ i ≡ dispatch-< k₁ j → i ≡ j
dispatch-<-k₁-inj {i} {j} with i ≤? suc k₁ | j ≤? suc k₁
... | yes _ | yes _ = inj₁-inj
... | no _ | no _ = inj₂-inj
... | yes _ | no _ = λ()
... | no _ | yes _ = λ()
-- Import 0 k₂ α
{-
Bijℕ : ★
Bijℕ = ∃[ n ](Vec (Maybe (Fin n)) n)
Bijℕ : ★
Bijℕ = List (Maybe ℕ)
-}
open Data public using (_^¹)
module Fun where
_^_ : ∀ {a} (α : Rel ℕ a) → ℕ → Rel ℕ a
α ^ zero = α
α ^ suc n = (α ^¹) ^ n
_^'_ : ∀ {a} (α : Rel ℕ a) → ℕ → Rel ℕ a
α ^' zero = α
α ^' suc n = (α ^' n) ^¹
module Fun-Data-^-equiv where
open Fun
open Data renaming (_^_ to _^d_)
⟹ : ∀ {a} {α : Rel ℕ a} n → α ^ n ⇒ α ^d n
⟹ zero = zero
⟹ (suc n) = suc ∘′ ⟹ n
⇐ : ∀ {a} {α : Rel ℕ a} n → α ^d n ⇒ α ^ n
⇐ zero (zero x) = x
⇐ (suc n) (suc x) = ⇐ n x
open Fun public
module Props where
^-assoc : ∀ {a} (α : Rel ℕ a) m n → (α ^ m) ^ n ≡ α ^ (m + n)
^-assoc α zero n = ≡.refl
^-assoc α (suc m) n rewrite ^-assoc (α ^¹) m n = ≡.refl
^-comm : ∀ {a} (α : Rel ℕ a) m n → (α ^ m) ^ n ≡ (α ^ n) ^ m
^-comm α m n rewrite ^-assoc α n m
| ℕ°.+-comm n m
| ≡.sym (^-assoc α m n)
= ≡.refl
^¹-comm-^ : ∀ {a} (α : Rel ℕ a) n → (α ^¹) ^ n ≡ (α ^ n) ^¹
^¹-comm-^ α n = ^-comm α 1 n
module Fun-^-equiv-^' where
open Props
open Fun
open Data hiding (_^_)
^¹-pres-⇒ : ∀ {a b} {α : Rel ℕ a} {β : Rel ℕ b} → α ⇒ β → (α ^¹) ⇒ (β ^¹)
^¹-pres-⇒ f zero = zero
^¹-pres-⇒ f (suc x) = suc (f x)
⟹ : ∀ {a} (α : Rel ℕ a) n → α ^ n ⇒ α ^' n
⟹ _ zero x = x
⟹ α (suc n) {i} {j} x = ^¹-pres-⇒ (⟹ α n) ((≡.subst (λ x → x i j) (^¹-comm-^ α n)) x)
⇐ : ∀ {a} (α : Rel ℕ a) n → α ^' n ⇒ α ^ n
⇐ _ zero x = x
⇐ α (suc n) {i} {j} x = ≡.subst (λ x → x i j) (≡.sym (^¹-comm-^ α n)) (^¹-pres-⇒ (⇐ α n) x)
open Fun public
{-
module IdFin⇔Never^ where
open Data hiding (_^_)
open Props
⟹' : ∀ n → IdFin n ⇒ Never ^' n
⟹' zero ()
⟹' (suc n) zero = zero
⟹' (suc n) (suc x) = suc (⟹' n x)
⟹ : ∀ {n} → IdFin n ⇒ Never ^ n
⟹ {n} = Fun-^-equiv-^'.⇐ Never n ∘ ⟹' n
⇐' : ∀ n → Never ^' n ⇒ IdFin n
⇐' zero (lift ())
⇐' (suc n) zero = zero
⇐' (suc n) (suc αij) = suc (⇐' n αij)
⇐ : ∀ {n} → Never ^ n ⇒ IdFin n
⇐ {n} = ⇐' n ∘ Fun-^-equiv-^'.⟹ Never n
-}